1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
/*
* 2-channel UHJ Decoder
*
* Copyright (c) Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "config.h"
#include <array>
#include <complex>
#include <cstddef>
#include <cstring>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "albit.h"
#include "alcomplex.h"
#include "almalloc.h"
#include "alnumbers.h"
#include "alspan.h"
#include "vector.h"
#include "opthelpers.h"
#include "phase_shifter.h"
#include "sndfile.h"
#include "win_main_utf8.h"
struct FileDeleter {
void operator()(gsl::owner<FILE*> file) { fclose(file); }
};
using FilePtr = std::unique_ptr<FILE,FileDeleter>;
struct SndFileDeleter {
void operator()(SNDFILE *sndfile) { sf_close(sndfile); }
};
using SndFilePtr = std::unique_ptr<SNDFILE,SndFileDeleter>;
using ubyte = unsigned char;
using ushort = unsigned short;
using uint = unsigned int;
using complex_d = std::complex<double>;
using byte4 = std::array<std::byte,4>;
constexpr std::array<ubyte,16> SUBTYPE_BFORMAT_FLOAT{
0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
0xca, 0x00, 0x00, 0x00
};
void fwrite16le(ushort val, FILE *f)
{
std::array data{static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff)};
fwrite(data.data(), 1, data.size(), f);
}
void fwrite32le(uint val, FILE *f)
{
std::array data{static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff),
static_cast<ubyte>((val>>16)&0xff), static_cast<ubyte>((val>>24)&0xff)};
fwrite(data.data(), 1, data.size(), f);
}
template<al::endian = al::endian::native>
byte4 f32AsLEBytes(const float &value) = delete;
template<>
byte4 f32AsLEBytes<al::endian::little>(const float &value)
{
byte4 ret{};
std::memcpy(ret.data(), &value, 4);
return ret;
}
template<>
byte4 f32AsLEBytes<al::endian::big>(const float &value)
{
byte4 ret{};
std::memcpy(ret.data(), &value, 4);
std::swap(ret[0], ret[3]);
std::swap(ret[1], ret[2]);
return ret;
}
constexpr uint BufferLineSize{1024};
using FloatBufferLine = std::array<float,BufferLineSize>;
using FloatBufferSpan = al::span<float,BufferLineSize>;
struct UhjDecoder {
constexpr static std::size_t sFilterDelay{1024};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mS{};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mD{};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mT{};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mQ{};
/* History for the FIR filter. */
alignas(16) std::array<float,sFilterDelay-1> mDTHistory{};
alignas(16) std::array<float,sFilterDelay-1> mSHistory{};
alignas(16) std::array<float,BufferLineSize + sFilterDelay*2> mTemp{};
void decode(const float *RESTRICT InSamples, const std::size_t InChannels,
const al::span<FloatBufferLine> OutSamples, const std::size_t SamplesToDo);
void decode2(const float *RESTRICT InSamples, const al::span<FloatBufferLine> OutSamples,
const std::size_t SamplesToDo);
};
const PhaseShifterT<UhjDecoder::sFilterDelay*2> PShift{};
/* Decoding UHJ is done as:
*
* S = Left + Right
* D = Left - Right
*
* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T)
* X = 0.418496*S - j(0.828331*D + 0.767820*T)
* Y = 0.795968*D - 0.676392*T + j(0.186633*S)
* Z = 1.023332*Q
*
* where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2-
* channel excludes Q and T. The B-Format signal reconstructed from 2-channel
* UHJ should not be run through a normal B-Format decoder, as it needs
* different shelf filters.
*
* NOTE: Some sources specify
*
* S = (Left + Right)/2
* D = (Left - Right)/2
*
* However, this is incorrect. It's halving Left and Right even though they
* were already halved during encoding, causing S and D to be half what they
* initially were at the encoding stage. This division is not present in
* Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R
* signals. As proof, taking Y for example:
*
* Y = 0.795968*D - 0.676392*T + j(0.186633*S)
*
* * Plug in the encoding parameters, using ? as a placeholder for whether S
* and D should receive an extra 0.5 factor
* Y = 0.795968*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? -
* 0.676392*(j(-0.1432*W + 0.6512*X) - 0.7071068*Y) +
* 0.186633*j(0.9396926*W + 0.1855740*X)*?
*
* * Move common factors in
* Y = (j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y) -
* (j(-0.1432*0.676392*W + 0.6512*0.676392*X) - 0.7071068*0.676392*Y) +
* j(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
*
* * Clean up extraneous groupings
* Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y -
* j(-0.1432*0.676392*W + 0.6512*0.676392*X) + 0.7071068*0.676392*Y +
* j*(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
*
* * Move phase shifts together and combine them
* Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X - -0.1432*0.676392*W -
* 0.6512*0.676392*X + 0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) +
* 0.6554516*0.795968*?*Y + 0.7071068*0.676392*Y
*
* * Reorder terms
* Y = j(-0.3420201*0.795968*?*W + 0.1432*0.676392*W + 0.9396926*0.186633*?*W +
* 0.5098604*0.795968*?*X + -0.6512*0.676392*X + 0.1855740*0.186633*?*X) +
* 0.7071068*0.676392*Y + 0.6554516*0.795968*?*Y
*
* * Move common factors out
* Y = j((-0.3420201*0.795968*? + 0.1432*0.676392 + 0.9396926*0.186633*?)*W +
* ( 0.5098604*0.795968*? + -0.6512*0.676392 + 0.1855740*0.186633*?)*X) +
* (0.7071068*0.676392 + 0.6554516*0.795968*?)*Y
*
* * Result w/ 0.5 factor:
* -0.3420201*0.795968*0.5 + 0.1432*0.676392 + 0.9396926*0.186633*0.5 = 0.04843*W
* 0.5098604*0.795968*0.5 + -0.6512*0.676392 + 0.1855740*0.186633*0.5 = -0.22023*X
* 0.7071068*0.676392 + 0.6554516*0.795968*0.5 = 0.73914*Y
* -> Y = j(0.04843*W + -0.22023*X) + 0.73914*Y
*
* * Result w/o 0.5 factor:
* -0.3420201*0.795968 + 0.1432*0.676392 + 0.9396926*0.186633 = 0.00000*W
* 0.5098604*0.795968 + -0.6512*0.676392 + 0.1855740*0.186633 = 0.00000*X
* 0.7071068*0.676392 + 0.6554516*0.795968 = 1.00000*Y
* -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y
*
* Not halving produces a result matching the original input.
*/
void UhjDecoder::decode(const float *RESTRICT InSamples, const std::size_t InChannels,
const al::span<FloatBufferLine> OutSamples, const std::size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
float *woutput{OutSamples[0].data()};
float *xoutput{OutSamples[1].data()};
float *youtput{OutSamples[2].data()};
/* Add a delay to the input channels, to align it with the all-passed
* signal.
*/
/* S = Left + Right */
for(std::size_t i{0};i < SamplesToDo;++i)
mS[sFilterDelay+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1];
/* D = Left - Right */
for(std::size_t i{0};i < SamplesToDo;++i)
mD[sFilterDelay+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1];
if(InChannels > 2)
{
/* T */
for(std::size_t i{0};i < SamplesToDo;++i)
mT[sFilterDelay+i] = InSamples[i*InChannels + 2];
}
if(InChannels > 3)
{
/* Q */
for(std::size_t i{0};i < SamplesToDo;++i)
mQ[sFilterDelay+i] = InSamples[i*InChannels + 3];
}
/* Precompute j(0.828331*D + 0.767820*T) and store in xoutput. */
auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterDelay, mT.cbegin(), tmpiter,
[](const float d, const float t) noexcept { return 0.828331f*d + 0.767820f*t; });
std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
PShift.process({xoutput, SamplesToDo}, mTemp.data());
for(std::size_t i{0};i < SamplesToDo;++i)
{
/* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) */
woutput[i] = 0.981532f*mS[i] + 0.197484f*xoutput[i];
/* X = 0.418496*S - j(0.828331*D + 0.767820*T) */
xoutput[i] = 0.418496f*mS[i] - xoutput[i];
}
/* Precompute j*S and store in youtput. */
tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
PShift.process({youtput, SamplesToDo}, mTemp.data());
for(std::size_t i{0};i < SamplesToDo;++i)
{
/* Y = 0.795968*D - 0.676392*T + j(0.186633*S) */
youtput[i] = 0.795968f*mD[i] - 0.676392f*mT[i] + 0.186633f*youtput[i];
}
if(OutSamples.size() > 3)
{
float *zoutput{OutSamples[3].data()};
/* Z = 1.023332*Q */
for(std::size_t i{0};i < SamplesToDo;++i)
zoutput[i] = 1.023332f*mQ[i];
}
std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterDelay, mT.begin());
std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterDelay, mQ.begin());
}
/* This is an alternative equation for decoding 2-channel UHJ. Not sure what
* the intended benefit is over the above equation as this slightly reduces the
* amount of the original left response and has more of the phase-shifted
* forward response on the left response.
*
* This decoding is done as:
*
* S = Left + Right
* D = Left - Right
*
* W = 0.981530*S + j*0.163585*D
* X = 0.418504*S - j*0.828347*D
* Y = 0.762956*D + j*0.384230*S
*
* where j is a +90 degree phase shift.
*
* NOTE: As above, S and D should not be halved. The only consequence of
* halving here is merely a -6dB reduction in output, but it's still incorrect.
*/
void UhjDecoder::decode2(const float *RESTRICT InSamples,
const al::span<FloatBufferLine> OutSamples, const std::size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
float *woutput{OutSamples[0].data()};
float *xoutput{OutSamples[1].data()};
float *youtput{OutSamples[2].data()};
/* S = Left + Right */
for(std::size_t i{0};i < SamplesToDo;++i)
mS[sFilterDelay+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1];
/* D = Left - Right */
for(std::size_t i{0};i < SamplesToDo;++i)
mD[sFilterDelay+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1];
/* Precompute j*D and store in xoutput. */
auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
std::copy_n(mD.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
PShift.process({xoutput, SamplesToDo}, mTemp.data());
for(std::size_t i{0};i < SamplesToDo;++i)
{
/* W = 0.981530*S + j*0.163585*D */
woutput[i] = 0.981530f*mS[i] + 0.163585f*xoutput[i];
/* X = 0.418504*S - j*0.828347*D */
xoutput[i] = 0.418504f*mS[i] - 0.828347f*xoutput[i];
}
/* Precompute j*S and store in youtput. */
tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
PShift.process({youtput, SamplesToDo}, mTemp.data());
for(std::size_t i{0};i < SamplesToDo;++i)
{
/* Y = 0.762956*D + j*0.384230*S */
youtput[i] = 0.762956f*mD[i] + 0.384230f*youtput[i];
}
std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
}
int main(int argc, char **argv)
{
if(argc < 2 || std::strcmp(argv[1], "-h") == 0 || std::strcmp(argv[1], "--help") == 0)
{
printf("Usage: %s <[options] filename.wav...>\n\n"
" Options:\n"
" --general Use the general equations for 2-channel UHJ (default).\n"
" --alternative Use the alternative equations for 2-channel UHJ.\n"
"\n"
"Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n"
"the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n"
"reconstruct the original B-Format signal.",
argv[0]);
return 1;
}
std::size_t num_files{0}, num_decoded{0};
bool use_general{true};
for(int fidx{1};fidx < argc;++fidx)
{
if(std::strcmp(argv[fidx], "--general") == 0)
{
use_general = true;
continue;
}
if(std::strcmp(argv[fidx], "--alternative") == 0)
{
use_general = false;
continue;
}
++num_files;
SF_INFO ininfo{};
SndFilePtr infile{sf_open(argv[fidx], SFM_READ, &ininfo)};
if(!infile)
{
fprintf(stderr, "Failed to open %s\n", argv[fidx]);
continue;
}
if(sf_command(infile.get(), SFC_WAVEX_GET_AMBISONIC, nullptr, 0) == SF_AMBISONIC_B_FORMAT)
{
fprintf(stderr, "%s is already B-Format\n", argv[fidx]);
continue;
}
uint outchans{};
if(ininfo.channels == 2)
outchans = 3;
else if(ininfo.channels == 3 || ininfo.channels == 4)
outchans = static_cast<uint>(ininfo.channels);
else
{
fprintf(stderr, "%s is not a 2-, 3-, or 4-channel file\n", argv[fidx]);
continue;
}
printf("Converting %s from %d-channel UHJ%s...\n", argv[fidx], ininfo.channels,
(ininfo.channels == 2) ? use_general ? " (general)" : " (alternative)" : "");
std::string outname{argv[fidx]};
auto lastslash = outname.find_last_of('/');
if(lastslash != std::string::npos)
outname.erase(0, lastslash+1);
auto lastdot = outname.find_last_of('.');
if(lastdot != std::string::npos)
outname.resize(lastdot+1);
outname += "amb";
FilePtr outfile{fopen(outname.c_str(), "wb")};
if(!outfile)
{
fprintf(stderr, "Failed to create %s\n", outname.c_str());
continue;
}
fputs("RIFF", outfile.get());
fwrite32le(0xFFFFFFFF, outfile.get()); // 'RIFF' header len; filled in at close
fputs("WAVE", outfile.get());
fputs("fmt ", outfile.get());
fwrite32le(40, outfile.get()); // 'fmt ' header len; 40 bytes for EXTENSIBLE
// 16-bit val, format type id (extensible: 0xFFFE)
fwrite16le(0xFFFE, outfile.get());
// 16-bit val, channel count
fwrite16le(static_cast<ushort>(outchans), outfile.get());
// 32-bit val, frequency
fwrite32le(static_cast<uint>(ininfo.samplerate), outfile.get());
// 32-bit val, bytes per second
fwrite32le(static_cast<uint>(ininfo.samplerate)*outchans*uint{sizeof(float)}, outfile.get());
// 16-bit val, frame size
fwrite16le(static_cast<ushort>(sizeof(float)*outchans), outfile.get());
// 16-bit val, bits per sample
fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
// 16-bit val, extra byte count
fwrite16le(22, outfile.get());
// 16-bit val, valid bits per sample
fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
// 32-bit val, channel mask
fwrite32le(0, outfile.get());
// 16 byte GUID, sub-type format
fwrite(SUBTYPE_BFORMAT_FLOAT.data(), 1, SUBTYPE_BFORMAT_FLOAT.size(), outfile.get());
fputs("data", outfile.get());
fwrite32le(0xFFFFFFFF, outfile.get()); // 'data' header len; filled in at close
if(ferror(outfile.get()))
{
fprintf(stderr, "Error writing wave file header: %s (%d)\n", strerror(errno), errno);
continue;
}
auto DataStart = ftell(outfile.get());
auto decoder = std::make_unique<UhjDecoder>();
auto inmem = std::vector<float>(size_t{BufferLineSize}*static_cast<uint>(ininfo.channels));
auto decmem = al::vector<std::array<float,BufferLineSize>, 16>(outchans);
auto outmem = std::vector<byte4>(size_t{BufferLineSize}*outchans);
/* A number of initial samples need to be skipped to cut the lead-in
* from the all-pass filter delay. The same number of samples need to
* be fed through the decoder after reaching the end of the input file
* to ensure none of the original input is lost.
*/
std::size_t LeadIn{UhjDecoder::sFilterDelay};
sf_count_t LeadOut{UhjDecoder::sFilterDelay};
while(LeadOut > 0)
{
sf_count_t sgot{sf_readf_float(infile.get(), inmem.data(), BufferLineSize)};
sgot = std::max<sf_count_t>(sgot, 0);
if(sgot < BufferLineSize)
{
const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)};
std::fill_n(inmem.data() + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f);
sgot += remaining;
LeadOut -= remaining;
}
auto got = static_cast<std::size_t>(sgot);
if(ininfo.channels > 2 || use_general)
decoder->decode(inmem.data(), static_cast<uint>(ininfo.channels), decmem, got);
else
decoder->decode2(inmem.data(), decmem, got);
if(LeadIn >= got)
{
LeadIn -= got;
continue;
}
got -= LeadIn;
for(std::size_t i{0};i < got;++i)
{
/* Attenuate by -3dB for FuMa output levels. */
constexpr auto inv_sqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
for(std::size_t j{0};j < outchans;++j)
outmem[i*outchans + j] = f32AsLEBytes(decmem[j][LeadIn+i] * inv_sqrt2);
}
LeadIn = 0;
std::size_t wrote{fwrite(outmem.data(), sizeof(byte4)*outchans, got, outfile.get())};
if(wrote < got)
{
fprintf(stderr, "Error writing wave data: %s (%d)\n", strerror(errno), errno);
break;
}
}
auto DataEnd = ftell(outfile.get());
if(DataEnd > DataStart)
{
long dataLen{DataEnd - DataStart};
if(fseek(outfile.get(), 4, SEEK_SET) == 0)
fwrite32le(static_cast<uint>(DataEnd-8), outfile.get()); // 'WAVE' header len
if(fseek(outfile.get(), DataStart-4, SEEK_SET) == 0)
fwrite32le(static_cast<uint>(dataLen), outfile.get()); // 'data' header len
}
fflush(outfile.get());
++num_decoded;
}
if(num_decoded == 0)
fprintf(stderr, "Failed to decode any input files\n");
else if(num_decoded < num_files)
fprintf(stderr, "Decoded %zu of %zu files\n", num_decoded, num_files);
else
printf("Decoded %zu file%s\n", num_decoded, (num_decoded==1)?"":"s");
return 0;
}
|