1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
package ru.olamedia.astronomy;
import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.SimpleTimeZone;
import java.util.TimeZone;
/**
* Sun position calculations
*
* @author olamedia
*
*/
@SuppressWarnings("unused")
public class SunCalendar extends GregorianCalendar {
/**
*
*/
private static final long serialVersionUID = 2708738531759361416L;
double jd;
double jcycle;
double meanLongitude; // L
private double latitude;
private double longitude;
public double getLongitude() { // User longitude at Earth
return longitude;
}
public void setLongitude(double longitude) {
this.longitude = longitude;
}
public double getLatitude() {
return latitude;
}
public void setLatitude(double latitude) {
this.latitude = latitude;
}
private double to360(double v) {
double v360 = v - Math.floor(v / 360) * 360;
while (v360 < 0) {
v360 += 360;
}
return v360;
}
private void computePosition() {
// These orbital elements are thus valid for the Sun's (apparent) orbit
// around the Earth.
// All angular values are expressed in degrees:
double w = 282.9404 + 4.70935E-5 * jd; // (longitude of perihelion)
// 282.9404_deg + 4.70935E-5_deg
// * jd
double a = 1.000000; // (mean distance, a.u.)
double e = 0.016709 - 1.151E-9 * jd; // (eccentricity)
double M = to360(356.0470 + 0.9856002585 * jd);// (mean anomaly)
// 356.0470_deg +
// 0.9856002585_deg * jd
double oblecl = 23.4393 - 3.563E-7 * jd; // (obliquity of the ecliptic)
// 23.4393_deg -
// 3.563E-7_deg * jd
double L = w + M; // Sun's mean longitude
meanLongitude = L;
// Let's go on computing an auxiliary angle, the eccentric anomaly.
// Since the eccentricity of the Sun's (i.e. the Earth's) orbit is so
// small, 0.017,
// a first approximation of E will be accurate enough. Below E and M are
// in degrees:
double E = M + (180 / Math.PI) * e * Math.sin(M)
* (1 + e * Math.cos(M)); // (eccentric anomaly)
// Now we compute the Sun's rectangular coordinates in the plane of the
// ecliptic, where the X axis points towards the perihelion:
double x = Math.cos(E) - e; // x = r * Math.cos(v) = Math.cos(E) - e
double y = Math.sin(E) * Math.sqrt(1 - e * e); // y = r * Math.sin(v) =
// Math.sin(E) * sqrt(1
// - e*e)
// Convert to distance and true anomaly:
double r = Math.sqrt(x * x + y * y);
double v = Math.atan2(y, x);
double lon = v + w;
}
double UT; // UT is the same as Greenwich time
public void computeSidetime() {
double GMST0 = to360(meanLongitude + 180) / 15;
double LON = 15; // Central Europe (at 15 deg east longitude = +15
// degrees long) on 19 april 1990 at 00:00 UT
// LON is the terrestial longitude in degrees (western longitude is
// negative, eastern positive).
// To "convert" the longitude from degrees to hours we divide it by 15
double SIDTIME = GMST0 + UT + LON / 15;
// To compute the altitude and azimuth
// we also need to know the Hour Angle, HA.
// The Hour Angle is zero when the clestial body
// is in the meridian i.e. in the south
// (or, from the southern heimsphere, in the north) -
// this is the moment when the celestial body
// is at its highest above the horizon.
// The Hour Angle increases with time
// (unless the object is moving faster than the Earth rotates;
// this is the case for most artificial satellites).
// It is computed from:
// RA - Right Ascension
// double HA = SIDTIME - RA;
}
/*
* Local Standard Time Meridian (LSTM) The Local Standard Time Meridian
* (LSTM) is a reference meridian used for a particular time zone and is
* similar to the Prime Meridian, which is used for Greenwich Mean Time.
*/
public double getLocalStandardTimeMeridian() {
return 15 * this.getTimeZone().getOffset(this.getTimeInMillis());
}
/*
* Equation of Time (EoT)
*
* The equation of time (EoT) (in minutes) is an empirical equation that
* corrects for the eccentricity of the Earth's orbit and the Earth's axial
* tilt. where B in degrees and d is the number of days since the start of
* the year. The time correction EoT is plotted in the figure below.
*/
public double getEquationOfTime() {
double B = getB();
return ((double) 9.87 * Math.sin(2 * B) - 7.53 * Math.cos(B) - 1.5 * Math
.sin(B));
}
/*
* Time Correction Factor (TC)
*
* The net Time Correction Factor (in minutes) accounts for the variation of
* the Local Solar Time (LST) within a given time zone due to the longitude
* variations within the time zone and also incorporates the EoT above.
*
* The factor of 4 minutes comes from the fact that the Earth rotates 1°
* every 4 minutes.
*/
public double getTimeCorrectionFactor() {
// FIX LATER
return 0;// 4 * (getLocalStandardTimeMeridian() - getLongitude())
// + getEquationOfTime();
}
/*
* Local Solar Time (LST)
*
* The Local Solar Time (LST) can be found by using the previous two
* corrections to adjust the local time (LT).
*/
public double getLocalSolarTime() {
return (double) get(Calendar.HOUR_OF_DAY) + (double) get(Calendar.MINUTE) / 60
+ (double) get(Calendar.SECOND) / (60 * 60) + getTimeCorrectionFactor()
/ 60;
}
/*
* Hour Angle (HRA)
*
* The Hour Angle converts the local solar time (LST) into the number of
* degrees which the sun moves across the sky. By definition, the Hour Angle
* is 0° at solar noon. Since the Earth rotates 15° per hour, each hour away
* from solar noon corresponds to an angular motion of the sun in the sky of
* 15°. In the morning the hour angle is negative, in the afternoon the hour
* angle is positive.
*/
public double getHourAngle() {
return 15 * (getLocalSolarTime() - 12); // 15°(LST-12)
}
/*
* Declination
*
* The declination angle has been previously given as:
*
* Where d is the number of days since the start of the year.
*/
public double getDeclination() {
return (double) 23.45 * Math.sin(getB());
}
public double getElevationAngle() {
// φ is the latitude of the location of interest
// δ is the declination angle
// elevation angle at solar noon:
// α = 90 - φ + δ (Northern Hemisphere: +90° North pole)
// α = 90 + φ - δ (Southern Hemisphere: -90° South pole)
// 90 + (getLatitude() - getDeclination())
// * (getLatitude() > 0 ? -1 : 1);
return Math.pow(
Math.sin(Math.sin(getDeclination()) * Math.sin(getLatitude())
+ Math.cos(getDeclination()) * Math.cos(getLatitude())
* Math.cos(getHourAngle())
), -1);
}
public double getZenithAngle() {
return 90 - getElevationAngle();
}
public double getSunrise() {
// Sunrise=12−1/150 cos−1(−sinφ sinδ cosφ cosδ)−TC/60
double delta = getLongitude() + radToDeg(getHourAngleSunrise());
double UTCsec = (720 - (4.0 * delta) - getEquationOfTime()) * 60;
double sec = UTCsec
+ (this.getTimeZone().getOffset(getTimeInMillis()) / 1000);// in
// minutes,
// UTC
return (double) (int) sec / (60 * 60);
}
public double getSunset() {
// Sunset=12+1/150 cos−1(−sinφ sinδ cosφ cosδ)−TC/60
double lw = getLongitude();
return (getHourAngle() + lw) / 360;
// 2451545.009 + + jcycle
// + 0.0053 * Math.sin(M) - 0.0069 * Math.sin(2*lamb);
// return 12
// + 15
// * Math.pow(
// Math.cos(-Math.tan(getLatitude())
// * Math.tan(getDeclination())), -1)
// - getTimeCorrectionFactor() / 60;
}
public double radToDeg(double angleRad) {
return (180.0 * angleRad / Math.PI);
}
public double degToRad(double angleDeg) {
return (Math.PI * angleDeg / 180.0);
}
public double getHourAngleSunrise() {
double latRad = degToRad(getLatitude());
double sdRad = degToRad(getDeclination());
double HAarg = (Math.cos(degToRad(90.833))
/ (Math.cos(latRad) * Math.cos(sdRad)) - Math.tan(latRad)
* Math.tan(sdRad));
double HA = Math.acos(HAarg);
return (HA); // in radians (for sunset, use -HA)
}
public double getB() {
return ((double) 360 / 365)
* (double) (this.get(Calendar.DAY_OF_YEAR) - 81);
}
public SunCalendar(Calendar cal, double longitude, // West-East
double latitude // +90° North-South -90°
) {
super();
this.setTimeZone(cal.getTimeZone());
this.setTime(cal.getTime());
this.setLongitude(longitude);
// Arctic Circle 66° 33′ 39″ N
// Tropic of Cancer 23° 26′ 21″ N
// Tropic of Capricorn 23° 26′ 21″ S
// Antarctic Circle 66° 33′ 39" S
this.setLatitude(latitude);
// computePosition();
// computeSidetime();
}
public void update() {
jd = JulianDate.makeJulianDateUsingMyModified(this);
// Here lw is the longitude west (west is positive, east is negative)
// of the observer on the Earth;
jcycle = jd - 2451545.009 - getLongitude() / 360;
}
}
|