aboutsummaryrefslogtreecommitdiffstats
path: root/src/java/com/jogamp/openal/util/SimpleSineSynth.java
blob: c3befe6f53027c21a94886f2dfd7234c70bdbbbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/**
 * Copyright 2023 JogAmp Community. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *    1. Redistributions of source code must retain the above copyright notice, this list of
 *       conditions and the following disclaimer.
 *
 *    2. Redistributions in binary form must reproduce the above copyright notice, this list
 *       of conditions and the following disclaimer in the documentation and/or other materials
 *       provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation are those of the
 * authors and should not be interpreted as representing official policies, either expressed
 * or implied, of JogAmp Community.
 */
package com.jogamp.openal.util;

import java.nio.ByteBuffer;
import java.nio.FloatBuffer;

import com.jogamp.common.av.AudioFormat;
import com.jogamp.common.av.AudioSink;
import com.jogamp.common.nio.Buffers;
import com.jogamp.common.util.InterruptSource;
import com.jogamp.common.util.InterruptedRuntimeException;
import com.jogamp.common.util.SourcedInterruptedException;
import com.jogamp.openal.sound3d.Context;
import com.jogamp.openal.sound3d.Device;
import com.jogamp.openal.sound3d.Source;

/**
 * A continuous simple off-thread mutable sine wave synthesizer.
 * <p>
 * Implementation utilizes an off-thread worker thread streaming the generated wave to OpenAL,
 * allowing to change frequency and amplitude without disturbance.
 * </p>
 */
public final class SimpleSineSynth {
    private static final boolean DEBUG = false;

    /** The value PI, i.e. 180 degrees in radians. */
    private static final float PI = 3.14159265358979323846f;

    /** The value 2PI, i.e. 360 degrees in radians. */
    private static final float TWO_PI = 2f * PI;

    private static final float EPSILON = 1.1920929E-7f; // Float.MIN_VALUE == 1.4e-45f ; double EPSILON 2.220446049250313E-16d

    private static final float SHORT_MAX = 32767.0f; // == Short.MAX_VALUE

    public static final float MIDDLE_C = 261.625f;

    private final ALAudioSink audioSink;
    private final Object stateLock = new Object();
    private volatile float audioAmplitude = 1.0f;
    private volatile float audioFreq = MIDDLE_C;
    private volatile int lastAudioPTS = 0;
    private SynthWorker streamWorker;

    public SimpleSineSynth() {
        this(null);
    }
    public SimpleSineSynth(final Device device) {
        audioSink = new ALAudioSink(device);
        streamWorker = new SynthWorker();
    }

    public ALAudioSink getSink() { return audioSink; }
    /** Return this instance's OpenAL {@link Device}. */
    public final Device getDevice() { return audioSink.getDevice(); }
    /** Return this instance's OpenAL {@link Context}. */
    public final Context getContext() { return audioSink.getContext(); }
    /** Return this instance's OpenAL {@link Source}. */
    public final Source getSource() { return audioSink.getSource(); }

    public void setFreq(final float f) {
        audioFreq = f;
    }
    public float getFreq() { return audioFreq; }

    public void setAmplitude(final float a) {
        audioAmplitude = Math.min(1.0f, Math.max(0.0f, a)); // clip [0..1]
    }
    public float getAmplitude() { return audioAmplitude; }

    /** Returns latency or frame-duration in milliseconds */
    public int getLatency() { return null != streamWorker ? streamWorker.frameDuration : 2*AudioSink.DefaultFrameDuration; }

    public void play() {
        synchronized( stateLock ) {
            if( null == streamWorker ) {
                streamWorker = new SynthWorker();
            }
            streamWorker.doResume();
        }
    }

    public void pause() {
        synchronized( stateLock ) {
            if( null != streamWorker ) {
                streamWorker.doPause(true);
            }
        }
    }

    public void stop() {
        synchronized( stateLock ) {
            if( null != streamWorker ) {
                streamWorker.doStop();
                streamWorker = null;
            }
        }
    }

    public boolean isPlaying() {
        synchronized( stateLock ) {
            if( null != streamWorker ) {
                return streamWorker.isPlaying();
            }
        }
        return false;
    }

    public boolean isRunning() {
        synchronized( stateLock ) {
            if( null != streamWorker ) {
                return streamWorker.isRunning();
            }
        }
        return false;
    }

    public int getGenPTS() { return lastAudioPTS; }

    public int getPTS() { return audioSink.getPTS(); }

    @Override
    public final String toString() {
        synchronized( stateLock ) {
            final int pts = getPTS();
            final int lag = getGenPTS() - pts;
            return getClass().getSimpleName()+"[f "+audioFreq+", a "+audioAmplitude+", latency "+getLatency()+
                    ", state[running "+isRunning()+", playing "+isPlaying()+"], pts[gen "+getGenPTS()+", play "+pts+", lag "+lag+"], "+audioSink.toString()+"]";
        }
    }

    private static ByteBuffer allocate(final int size) {
        // return ByteBuffer.allocate(size);
        return Buffers.newDirectByteBuffer(size);
    }

    class SynthWorker extends InterruptSource.Thread {
        private volatile boolean isRunning = false;
        private volatile boolean isPlaying = false;
        private volatile boolean isBlocked = false;

        private volatile boolean shallPause = true;
        private volatile boolean shallStop = false;

        private final boolean useFloat32SampleType;
        private final int bytesPerSample;
        private final AudioFormat audioFormat;
        private ByteBuffer sampleBuffer;
        private int frameDuration;
        private int audioQueueLimit;

        private float lastFreq;
        private float nextSin;
        private boolean upSin;
        private int nextStep;

        /**
         * Starts this daemon thread,
         * <p>
         * This thread pauses after it's started!
         * </p>
         **/
        SynthWorker() {
            setDaemon(true);
            synchronized(this) {
                lastAudioPTS = 0;

                // Note: float32 is OpenAL-Soft's internally used format to mix samples etc.
                final AudioFormat f32 = new AudioFormat(audioSink.getPreferredFormat().sampleRate, 4<<3, 1, true /* signed */,
                                                        false /* fixed point */, false /* planar */, true /* littleEndian */);
                if( audioSink.isSupported(f32) ) {
                    useFloat32SampleType = true;
                    bytesPerSample = 4;
                    audioFormat = f32;
                } else {
                    useFloat32SampleType = false;
                    bytesPerSample = 2;
                    audioFormat = new AudioFormat(audioSink.getPreferredFormat().sampleRate, bytesPerSample<<3, 1, true /* signed */,
                                                  true /* fixed point */, false /* planar */, true /* littleEndian */);
                }
                System.err.println("OpenAL float32 supported: "+useFloat32SampleType);

                sampleBuffer = allocate( audioFormat.getDurationsByteSize(30/1000f) ); // pre-allocate buffer for 30ms

                // clip [16 .. 2*AudioSink.DefaultFrameDuration]
                frameDuration = 10; // let's try for the best ..
                audioQueueLimit = Math.max( 16, Math.min(3*AudioSink.DefaultFrameDuration, 3*Math.round( 1000f*audioSink.getDefaultLatency() ) ) ); // ms

                audioSink.init(audioFormat, frameDuration, audioQueueLimit, 0, audioQueueLimit);
                frameDuration = Math.round( 1000f*audioSink.getLatency() ); // actual number
                lastFreq = 0;
                nextSin = 0;
                upSin = true;
                nextStep = 0;
                start();
                try {
                    this.notifyAll();  // wake-up startup-block
                    while( !isRunning && !shallStop ) {
                        this.wait();  // wait until started
                    }
                } catch (final InterruptedException e) {
                    throw new InterruptedRuntimeException(e);
                }
            }
        }

        private final int findNextStep(final boolean upSin, final float nextSin, final float freq, final int sampleRate, final int sampleCount) {
            final float sample_step = ( TWO_PI * freq ) / sampleRate;

            float s_diff = Float.MAX_VALUE;
            float s_best = 0;
            int i_best = -1;
            float s0 = 0;
            for(int i=0; i < sampleCount && s_diff >= EPSILON ; ++i) {
                final float s1 = (float) Math.sin( sample_step * i );
                final float s_d = Math.abs(nextSin - s1);
                if( s_d < s_diff && ( ( upSin && s1 >= s0 ) || ( !upSin && s1 < s0 ) ) ) {
                    s_best = s1;
                    s_diff = s_d;
                    i_best = i;
                }
                s0 = s1;
            }
            if( DEBUG ) {
                System.err.printf("%nBest: %d/[%d..%d]: s %f / %f (up %b), s_diff %f%n", i_best, 0, sampleCount, s_best, nextSin, upSin, s_diff);
            }
            return i_best;
        }

        private final void enqueueWave() {
            // use local cache of volatiles, stable values
            final float freq = audioFreq;
            final float amp = audioAmplitude;

            final float period = 1.0f / freq; // [s]
            final float sample_step = ( TWO_PI * freq ) / audioFormat.sampleRate;

            final float duration = frameDuration / 1000.0f; // [s]
            final int sample_count = (int)( duration * audioFormat.sampleRate ); // [n]

            final boolean overflow;
            final boolean changedFreq;
            if( Math.abs( freq - lastFreq ) >= EPSILON ) {
                changedFreq = true;
                overflow = false;
                lastFreq = freq;
                nextStep = findNextStep(upSin, nextSin, freq, audioFormat.sampleRate, sample_count);
            } else {
                changedFreq = false;
                if( nextStep + sample_count >= Integer.MAX_VALUE/1000 ) {
                    nextStep = findNextStep(upSin, nextSin, freq, audioFormat.sampleRate, sample_count);
                    overflow = true;
                } else {
                    overflow = false;
                }
            }

            if( DEBUG ) {
                if( changedFreq || overflow ) {
                    final float wave_count = duration / period;
                    System.err.printf("%nFreq %f Hz, period %f [ms], waves %.2f, duration %f [ms], sample[count %d, rate %d, step %f, next[up %b, sin %f, step %d]]%n", freq,
                            1000.0*period, wave_count, 1000.0*duration, sample_count, audioFormat.sampleRate, sample_step, upSin, nextSin, nextStep);
                    // System.err.println(Synth02AL.this.toString());
                }
            }

            if( sampleBuffer.capacity() < bytesPerSample*sample_count ) {
                if( DEBUG ) {
                    System.err.printf("SampleBuffer grow: %d -> %d%n", sampleBuffer.capacity(), bytesPerSample*sample_count);
                }
                sampleBuffer = allocate(bytesPerSample*sample_count);
            }

            {
                int i;
                float s = 0;
                if( useFloat32SampleType ) {
                    final FloatBuffer f32sb = sampleBuffer.asFloatBuffer();
                    final int l = nextStep;
                    for(i=l; i<l+sample_count; ++i) {
                        s = (float) Math.sin( sample_step * i );
                        f32sb.put(s * amp);
                    }
                } else {
                    final int l = nextStep;
                    for(i=l; i<l+sample_count; ++i) {
                        s = (float) Math.sin( sample_step * i );
                        final short s16 = (short)( SHORT_MAX * s * amp );
                        sampleBuffer.put( (byte) ( s16 & 0xff ) );
                        sampleBuffer.put( (byte) ( ( s16 >>> 8 ) & 0xff ) );
                    }
                }
                nextStep = i;
                nextSin = (float) Math.sin( sample_step * nextStep );
                upSin = nextSin >= s;
            }
            sampleBuffer.rewind();
            audioSink.enqueueData(lastAudioPTS, sampleBuffer, sample_count*bytesPerSample);
            sampleBuffer.clear();
            lastAudioPTS += frameDuration;
        }

        public final synchronized void doPause(final boolean waitUntilDone) {
            if( isPlaying ) {
                shallPause = true;
                if( java.lang.Thread.currentThread() != this ) {
                    if( isBlocked && isPlaying ) {
                        this.interrupt();
                    }
                    if( waitUntilDone ) {
                        try {
                            while( isPlaying && isRunning ) {
                                this.wait(); // wait until paused
                            }
                        } catch (final InterruptedException e) {
                            throw new InterruptedRuntimeException(e);
                        }
                    }
                }
            }
        }
        public final synchronized void doResume() {
            if( isRunning && !isPlaying ) {
                shallPause = false;
                if( java.lang.Thread.currentThread() != this ) {
                    try {
                        this.notifyAll();  // wake-up pause-block
                        while( !isPlaying && !shallPause && isRunning ) {
                            this.wait(); // wait until resumed
                        }
                    } catch (final InterruptedException e) {
                        final InterruptedException e2 = SourcedInterruptedException.wrap(e);
                        doPause(false);
                        throw new InterruptedRuntimeException(e2);
                    }
                }
            }
        }
        public final synchronized void doStop() {
            if( isRunning ) {
                shallStop = true;
                if( java.lang.Thread.currentThread() != this ) {
                    if( isBlocked && isRunning ) {
                        this.interrupt();
                    }
                    try {
                        this.notifyAll();  // wake-up pause-block (opt)
                        while( isRunning ) {
                            this.wait();  // wait until stopped
                        }
                    } catch (final InterruptedException e) {
                        throw new InterruptedRuntimeException(e);
                    }
                }
            }
            audioSink.destroy();
        }
        public final boolean isRunning() { return isRunning; }
        public final boolean isPlaying() { return isPlaying; }

        @Override
        public final void run() {
            setName(getName()+"-SynthWorker_"+SynthWorkerInstanceId);
            SynthWorkerInstanceId++;

            synchronized ( this ) {
                isRunning = true;
                this.notifyAll(); // wake-up ctor()
            }

            while( !shallStop ) {
                if( shallPause ) {
                    synchronized ( this ) {
                        while( shallPause && !shallStop ) {
                            audioSink.pause();
                            isPlaying = false;
                            this.notifyAll(); // wake-up doPause()
                            try {
                                this.wait();  // wait until resumed
                            } catch (final InterruptedException e) {
                                if( !shallPause ) {
                                    e.printStackTrace();
                                }
                            }
                        }
                        audioSink.play();
                        isPlaying = true;
                        this.notifyAll(); // wake-up doResume()
                    }
                }
                if( !shallStop ) {
                    isBlocked = true;
                    enqueueWave();
                    isBlocked = false;
                }
            }

            synchronized ( this ) {
                isRunning = false;
                isPlaying = false;
                this.notifyAll(); // wake-up doStop()
            }
        }
    }
    static int SynthWorkerInstanceId = 0;
}