diff options
Diffstat (limited to 'src/classes/com/sun/opengl/impl/tessellator/Geom.java')
-rw-r--r-- | src/classes/com/sun/opengl/impl/tessellator/Geom.java | 318 |
1 files changed, 318 insertions, 0 deletions
diff --git a/src/classes/com/sun/opengl/impl/tessellator/Geom.java b/src/classes/com/sun/opengl/impl/tessellator/Geom.java new file mode 100644 index 000000000..6b31cc30e --- /dev/null +++ b/src/classes/com/sun/opengl/impl/tessellator/Geom.java @@ -0,0 +1,318 @@ +/* +* Portions Copyright (C) 2003-2006 Sun Microsystems, Inc. +* All rights reserved. +*/ + +/* +** License Applicability. Except to the extent portions of this file are +** made subject to an alternative license as permitted in the SGI Free +** Software License B, Version 1.1 (the "License"), the contents of this +** file are subject only to the provisions of the License. You may not use +** this file except in compliance with the License. You may obtain a copy +** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 +** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: +** +** http://oss.sgi.com/projects/FreeB +** +** Note that, as provided in the License, the Software is distributed on an +** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS +** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND +** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A +** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. +** +** NOTE: The Original Code (as defined below) has been licensed to Sun +** Microsystems, Inc. ("Sun") under the SGI Free Software License B +** (Version 1.1), shown above ("SGI License"). Pursuant to Section +** 3.2(3) of the SGI License, Sun is distributing the Covered Code to +** you under an alternative license ("Alternative License"). This +** Alternative License includes all of the provisions of the SGI License +** except that Section 2.2 and 11 are omitted. Any differences between +** the Alternative License and the SGI License are offered solely by Sun +** and not by SGI. +** +** Original Code. The Original Code is: OpenGL Sample Implementation, +** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, +** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. +** Copyright in any portions created by third parties is as indicated +** elsewhere herein. All Rights Reserved. +** +** Additional Notice Provisions: The application programming interfaces +** established by SGI in conjunction with the Original Code are The +** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released +** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version +** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X +** Window System(R) (Version 1.3), released October 19, 1998. This software +** was created using the OpenGL(R) version 1.2.1 Sample Implementation +** published by SGI, but has not been independently verified as being +** compliant with the OpenGL(R) version 1.2.1 Specification. +** +** Author: Eric Veach, July 1994 +** Java Port: Pepijn Van Eeckhoudt, July 2003 +** Java Port: Nathan Parker Burg, August 2003 +*/ +package com.sun.opengl.impl.glu.tessellator; + +class Geom { + private Geom() { + } + + /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w), + * evaluates the t-coord of the edge uw at the s-coord of the vertex v. + * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v. + * If uw is vertical (and thus passes thru v), the result is zero. + * + * The calculation is extremely accurate and stable, even when v + * is very close to u or w. In particular if we set v->t = 0 and + * let r be the negated result (this evaluates (uw)(v->s)), then + * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t). + */ + static double EdgeEval(GLUvertex u, GLUvertex v, GLUvertex w) { + double gapL, gapR; + + assert (VertLeq(u, v) && VertLeq(v, w)); + + gapL = v.s - u.s; + gapR = w.s - v.s; + + if (gapL + gapR > 0) { + if (gapL < gapR) { + return (v.t - u.t) + (u.t - w.t) * (gapL / (gapL + gapR)); + } else { + return (v.t - w.t) + (w.t - u.t) * (gapR / (gapL + gapR)); + } + } + /* vertical line */ + return 0; + } + + static double EdgeSign(GLUvertex u, GLUvertex v, GLUvertex w) { + double gapL, gapR; + + assert (VertLeq(u, v) && VertLeq(v, w)); + + gapL = v.s - u.s; + gapR = w.s - v.s; + + if (gapL + gapR > 0) { + return (v.t - w.t) * gapL + (v.t - u.t) * gapR; + } + /* vertical line */ + return 0; + } + + + /*********************************************************************** + * Define versions of EdgeSign, EdgeEval with s and t transposed. + */ + + static double TransEval(GLUvertex u, GLUvertex v, GLUvertex w) { + /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w), + * evaluates the t-coord of the edge uw at the s-coord of the vertex v. + * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v. + * If uw is vertical (and thus passes thru v), the result is zero. + * + * The calculation is extremely accurate and stable, even when v + * is very close to u or w. In particular if we set v->s = 0 and + * let r be the negated result (this evaluates (uw)(v->t)), then + * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s). + */ + double gapL, gapR; + + assert (TransLeq(u, v) && TransLeq(v, w)); + + gapL = v.t - u.t; + gapR = w.t - v.t; + + if (gapL + gapR > 0) { + if (gapL < gapR) { + return (v.s - u.s) + (u.s - w.s) * (gapL / (gapL + gapR)); + } else { + return (v.s - w.s) + (w.s - u.s) * (gapR / (gapL + gapR)); + } + } + /* vertical line */ + return 0; + } + + static double TransSign(GLUvertex u, GLUvertex v, GLUvertex w) { + /* Returns a number whose sign matches TransEval(u,v,w) but which + * is cheaper to evaluate. Returns > 0, == 0 , or < 0 + * as v is above, on, or below the edge uw. + */ + double gapL, gapR; + + assert (TransLeq(u, v) && TransLeq(v, w)); + + gapL = v.t - u.t; + gapR = w.t - v.t; + + if (gapL + gapR > 0) { + return (v.s - w.s) * gapL + (v.s - u.s) * gapR; + } + /* vertical line */ + return 0; + } + + + static boolean VertCCW(GLUvertex u, GLUvertex v, GLUvertex w) { + /* For almost-degenerate situations, the results are not reliable. + * Unless the floating-point arithmetic can be performed without + * rounding errors, *any* implementation will give incorrect results + * on some degenerate inputs, so the client must have some way to + * handle this situation. + */ + return (u.s * (v.t - w.t) + v.s * (w.t - u.t) + w.s * (u.t - v.t)) >= 0; + } + +/* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b), + * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces + * this in the rare case that one argument is slightly negative. + * The implementation is extremely stable numerically. + * In particular it guarantees that the result r satisfies + * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate + * even when a and b differ greatly in magnitude. + */ + static double Interpolate(double a, double x, double b, double y) { + a = (a < 0) ? 0 : a; + b = (b < 0) ? 0 : b; + if (a <= b) { + if (b == 0) { + return (x + y) / 2.0; + } else { + return (x + (y - x) * (a / (a + b))); + } + } else { + return (y + (x - y) * (b / (a + b))); + } + } + + static void EdgeIntersect(GLUvertex o1, GLUvertex d1, + GLUvertex o2, GLUvertex d2, + GLUvertex v) +/* Given edges (o1,d1) and (o2,d2), compute their point of intersection. + * The computed point is guaranteed to lie in the intersection of the + * bounding rectangles defined by each edge. + */ { + double z1, z2; + + /* This is certainly not the most efficient way to find the intersection + * of two line segments, but it is very numerically stable. + * + * Strategy: find the two middle vertices in the VertLeq ordering, + * and interpolate the intersection s-value from these. Then repeat + * using the TransLeq ordering to find the intersection t-value. + */ + + if (!VertLeq(o1, d1)) { + GLUvertex temp = o1; + o1 = d1; + d1 = temp; + } + if (!VertLeq(o2, d2)) { + GLUvertex temp = o2; + o2 = d2; + d2 = temp; + } + if (!VertLeq(o1, o2)) { + GLUvertex temp = o1; + o1 = o2; + o2 = temp; + temp = d1; + d1 = d2; + d2 = temp; + } + + if (!VertLeq(o2, d1)) { + /* Technically, no intersection -- do our best */ + v.s = (o2.s + d1.s) / 2.0; + } else if (VertLeq(d1, d2)) { + /* Interpolate between o2 and d1 */ + z1 = EdgeEval(o1, o2, d1); + z2 = EdgeEval(o2, d1, d2); + if (z1 + z2 < 0) { + z1 = -z1; + z2 = -z2; + } + v.s = Interpolate(z1, o2.s, z2, d1.s); + } else { + /* Interpolate between o2 and d2 */ + z1 = EdgeSign(o1, o2, d1); + z2 = -EdgeSign(o1, d2, d1); + if (z1 + z2 < 0) { + z1 = -z1; + z2 = -z2; + } + v.s = Interpolate(z1, o2.s, z2, d2.s); + } + + /* Now repeat the process for t */ + + if (!TransLeq(o1, d1)) { + GLUvertex temp = o1; + o1 = d1; + d1 = temp; + } + if (!TransLeq(o2, d2)) { + GLUvertex temp = o2; + o2 = d2; + d2 = temp; + } + if (!TransLeq(o1, o2)) { + GLUvertex temp = o2; + o2 = o1; + o1 = temp; + temp = d2; + d2 = d1; + d1 = temp; + } + + if (!TransLeq(o2, d1)) { + /* Technically, no intersection -- do our best */ + v.t = (o2.t + d1.t) / 2.0; + } else if (TransLeq(d1, d2)) { + /* Interpolate between o2 and d1 */ + z1 = TransEval(o1, o2, d1); + z2 = TransEval(o2, d1, d2); + if (z1 + z2 < 0) { + z1 = -z1; + z2 = -z2; + } + v.t = Interpolate(z1, o2.t, z2, d1.t); + } else { + /* Interpolate between o2 and d2 */ + z1 = TransSign(o1, o2, d1); + z2 = -TransSign(o1, d2, d1); + if (z1 + z2 < 0) { + z1 = -z1; + z2 = -z2; + } + v.t = Interpolate(z1, o2.t, z2, d2.t); + } + } + + static boolean VertEq(GLUvertex u, GLUvertex v) { + return u.s == v.s && u.t == v.t; + } + + static boolean VertLeq(GLUvertex u, GLUvertex v) { + return u.s < v.s || (u.s == v.s && u.t <= v.t); + } + +/* Versions of VertLeq, EdgeSign, EdgeEval with s and t transposed. */ + + static boolean TransLeq(GLUvertex u, GLUvertex v) { + return u.t < v.t || (u.t == v.t && u.s <= v.s); + } + + static boolean EdgeGoesLeft(GLUhalfEdge e) { + return VertLeq(e.Sym.Org, e.Org); + } + + static boolean EdgeGoesRight(GLUhalfEdge e) { + return VertLeq(e.Org, e.Sym.Org); + } + + static double VertL1dist(GLUvertex u, GLUvertex v) { + return Math.abs(u.s - v.s) + Math.abs(u.t - v.t); + } +} |