1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
|
/**
* Copyright 2010-2023 JogAmp Community. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are those of the
* authors and should not be interpreted as representing official policies, either expressed
* or implied, of JogAmp Community.
*/
package com.jogamp.math;
/**
* Quaternion implementation supporting
* <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q34">Gimbal-Lock</a> free rotations.
* <p>
* All matrix operation provided are in column-major order,
* as specified in the OpenGL fixed function pipeline, i.e. compatibility profile.
* See {@link FloatUtil}.
* </p>
* <p>
* See <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html">Matrix-FAQ</a>
* </p>
* <p>
* See <a href="http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm">euclideanspace.com-Quaternion</a>
* </p>
*/
public class Quaternion {
private float x, y, z, w;
/**
* Quaternion Epsilon, used with equals method to determine if two Quaternions are close enough to be considered equal.
* <p>
* Using {@value}, which is ~10 times {@link FloatUtil#EPSILON}.
* </p>
*/
public static final float ALLOWED_DEVIANCE = 1.0E-6f; // FloatUtil.EPSILON == 1.1920929E-7f; double ALLOWED_DEVIANCE: 1.0E-8f
public Quaternion() {
x = y = z = 0; w = 1;
}
public Quaternion(final Quaternion q) {
set(q);
}
public Quaternion(final float x, final float y, final float z, final float w) {
set(x, y, z, w);
}
/**
* See {@link #magnitude()} for special handling of {@link FloatUtil#EPSILON epsilon},
* which is not applied here.
* @return the squared magnitude of this quaternion.
*/
public final float magnitudeSquared() {
return w*w + x*x + y*y + z*z;
}
/**
* Return the magnitude of this quaternion, i.e. sqrt({@link #magnitudeSquared()})
* <p>
* A magnitude of zero shall equal {@link #isIdentity() identity},
* as performed by {@link #normalize()}.
* </p>
* <p>
* Implementation Details:
* <ul>
* <li> returns 0f if {@link #magnitudeSquared()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
* <li> returns 1f if {@link #magnitudeSquared()} is {@link FloatUtil#isEqual(float, float, float) equals 1f} using {@link FloatUtil#EPSILON epsilon}</li>
* </ul>
* </p>
*/
public final float magnitude() {
final float magnitudeSQ = magnitudeSquared();
if ( FloatUtil.isZero(magnitudeSQ) ) {
return 0f;
}
if ( FloatUtil.isEqual(1f, magnitudeSQ) ) {
return 1f;
}
return FloatUtil.sqrt(magnitudeSQ);
}
public final float w() {
return w;
}
public final void setW(final float w) {
this.w = w;
}
public final float x() {
return x;
}
public final void setX(final float x) {
this.x = x;
}
public final float y() {
return y;
}
public final void setY(final float y) {
this.y = y;
}
public final float z() {
return z;
}
public final void setZ(final float z) {
this.z = z;
}
/**
* Returns the dot product of this quaternion with the given x,y,z and w components.
*/
public final float dot(final float x, final float y, final float z, final float w) {
return this.x * x + this.y * y + this.z * z + this.w * w;
}
/**
* Returns the dot product of this quaternion with the given quaternion
*/
public final float dot(final Quaternion quat) {
return dot(quat.x(), quat.y(), quat.z(), quat.w());
}
/**
* Returns <code>true</code> if this quaternion has identity.
* <p>
* Implementation uses {@link FloatUtil#EPSILON epsilon} to compare
* {@link #w() W} {@link FloatUtil#isEqual(float, float) against 1f} and
* {@link #x() X}, {@link #y() Y} and {@link #z() Z}
* {@link FloatUtil#isZero(float) against zero}.
* </p>
*/
public final boolean isIdentity() {
return FloatUtil.isEqual(1f, w) && VectorUtil.isZero(x, y, z);
// return w == 1f && x == 0f && y == 0f && z == 0f;
}
/***
* Set this quaternion to identity (x=0,y=0,z=0,w=1)
* @return this quaternion for chaining.
*/
public final Quaternion setIdentity() {
x = y = z = 0f; w = 1f;
return this;
}
/**
* Normalize a quaternion required if to be used as a rotational quaternion.
* <p>
* Implementation Details:
* <ul>
* <li> {@link #setIdentity()} if {@link #magnitude()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
* </ul>
* </p>
* @return this quaternion for chaining.
*/
public final Quaternion normalize() {
final float norm = magnitude();
if ( FloatUtil.isZero(norm, FloatUtil.EPSILON) ) {
setIdentity();
} else {
final float invNorm = 1f/norm;
w *= invNorm;
x *= invNorm;
y *= invNorm;
z *= invNorm;
}
return this;
}
/**
* Conjugates this quaternion <code>[-x, -y, -z, w]</code>.
* @return this quaternion for chaining.
* @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q49">Matrix-FAQ Q49</a>
*/
public Quaternion conjugate() {
x = -x;
y = -y;
z = -z;
return this;
}
/**
* Invert the quaternion If rotational, will produce a the inverse rotation
* <p>
* Implementation Details:
* <ul>
* <li> {@link #conjugate() conjugates} if {@link #magnitudeSquared()} is is {@link FloatUtil#isEqual(float, float, float) equals 1f} using {@link FloatUtil#EPSILON epsilon}</li>
* </ul>
* </p>
* @return this quaternion for chaining.
* @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q50">Matrix-FAQ Q50</a>
*/
public final Quaternion invert() {
final float magnitudeSQ = magnitudeSquared();
if ( FloatUtil.isEqual(1.0f, magnitudeSQ) ) {
conjugate();
} else {
final float invmsq = 1f/magnitudeSQ;
w *= invmsq;
x = -x * invmsq;
y = -y * invmsq;
z = -z * invmsq;
}
return this;
}
/**
* Set all values of this quaternion using the given src.
* @return this quaternion for chaining.
*/
public final Quaternion set(final Quaternion src) {
this.x = src.x;
this.y = src.y;
this.z = src.z;
this.w = src.w;
return this;
}
/**
* Set all values of this quaternion using the given components.
* @return this quaternion for chaining.
*/
public final Quaternion set(final float x, final float y, final float z, final float w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
/**
* Add a quaternion
*
* @param q quaternion
* @return this quaternion for chaining.
* @see <a href="http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm#add">euclideanspace.com-QuaternionAdd</a>
*/
public final Quaternion add(final Quaternion q) {
x += q.x;
y += q.y;
z += q.z;
w += q.w;
return this;
}
/**
* Subtract a quaternion
*
* @param q quaternion
* @return this quaternion for chaining.
* @see <a href="http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm#add">euclideanspace.com-QuaternionAdd</a>
*/
public final Quaternion subtract(final Quaternion q) {
x -= q.x;
y -= q.y;
z -= q.z;
w -= q.w;
return this;
}
/**
* Multiply this quaternion by the param quaternion
*
* @param q a quaternion to multiply with
* @return this quaternion for chaining.
* @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q53">Matrix-FAQ Q53</a>
* @see <a href="http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm#mul">euclideanspace.com-QuaternionMul</a>
*/
public final Quaternion mult(final Quaternion q) {
return set( w * q.x + x * q.w + y * q.z - z * q.y,
w * q.y - x * q.z + y * q.w + z * q.x,
w * q.z + x * q.y - y * q.x + z * q.w,
w * q.w - x * q.x - y * q.y - z * q.z );
}
/**
* Scale this quaternion by a constant
*
* @param n a float constant
* @return this quaternion for chaining.
* @see <a href="http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm#scale">euclideanspace.com-QuaternionScale</a>
*/
public final Quaternion scale(final float n) {
x *= n;
y *= n;
z *= n;
w *= n;
return this;
}
/**
* Rotate this quaternion by the given angle and axis.
* <p>
* The axis must be a normalized vector.
* </p>
* <p>
* A rotational quaternion is made from the given angle and axis.
* </p>
*
* @param angle in radians
* @param axisX x-coord of rotation axis
* @param axisY y-coord of rotation axis
* @param axisZ z-coord of rotation axis
* @return this quaternion for chaining.
*/
public Quaternion rotateByAngleNormalAxis(final float angle, final float axisX, final float axisY, final float axisZ) {
if( VectorUtil.isZero(axisX, axisY, axisZ, FloatUtil.EPSILON) ) {
// no change
return this;
}
final float halfAngle = 0.5f * angle;
final float sin = FloatUtil.sin(halfAngle);
final float qw = FloatUtil.cos(halfAngle);
final float qx = sin * axisX;
final float qy = sin * axisY;
final float qz = sin * axisZ;
return set( x * qw + y * qz - z * qy + w * qx,
-x * qz + y * qw + z * qx + w * qy,
x * qy - y * qx + z * qw + w * qz,
-x * qx - y * qy - z * qz + w * qw);
}
/**
* Rotate this quaternion by the given angle and axis.
* <p>
* The axis must be a normalized vector.
* </p>
* <p>
* A rotational quaternion is made from the given angle and axis.
* </p>
*
* @param angle in radians
* @param axis Vec3f coord of rotation axis
* @return this quaternion for chaining.
*/
public Quaternion rotateByAngleNormalAxis(final float angle, final Vec3f axis) {
return rotateByAngleNormalAxis(angle, axis.x(), axis.y(), axis.z());
}
/**
* Rotate this quaternion around X axis with the given angle in radians
*
* @param angle in radians
* @return this quaternion for chaining.
*/
public Quaternion rotateByAngleX(final float angle) {
final float halfAngle = 0.5f * angle;
final float sin = FloatUtil.sin(halfAngle);
final float cos = FloatUtil.cos(halfAngle);
return set( x * cos + w * sin,
y * cos + z * sin,
-y * sin + z * cos,
-x * sin + w * cos);
}
/**
* Rotate this quaternion around Y axis with the given angle in radians
*
* @param angle in radians
* @return this quaternion for chaining.
*/
public Quaternion rotateByAngleY(final float angle) {
final float halfAngle = 0.5f * angle;
final float sin = FloatUtil.sin(halfAngle);
final float cos = FloatUtil.cos(halfAngle);
return set( x * cos - z * sin,
y * cos + w * sin,
x * sin + z * cos,
-y * sin + w * cos);
}
/**
* Rotate this quaternion around Z axis with the given angle in radians
*
* @param angle in radians
* @return this quaternion for chaining.
*/
public Quaternion rotateByAngleZ(final float angle) {
final float halfAngle = 0.5f * angle;
final float sin = FloatUtil.sin(halfAngle);
final float cos = FloatUtil.cos(halfAngle);
return set( x * cos + y * sin,
-x * sin + y * cos,
z * cos + w * sin,
-z * sin + w * cos);
}
/**
* Rotates this quaternion from the given Euler rotation array <code>angradXYZ</code> in radians.
* <p>
* The <code>angradXYZ</code> array is laid out in natural order:
* <ul>
* <li>x - bank</li>
* <li>y - heading</li>
* <li>z - attitude</li>
* </ul>
* </p>
* For details see {@link #rotateByEuler(float, float, float)}.
* @param angradXYZ euler angle array in radians
* @return this quaternion for chaining.
* @see #rotateByEuler(float, float, float)
*/
public final Quaternion rotateByEuler(final Vec3f angradXYZ) {
return rotateByEuler(angradXYZ.x(), angradXYZ.y(), angradXYZ.z());
}
/**
* Rotates this quaternion from the given Euler rotation angles in radians.
* <p>
* The rotations are applied in the given order and using chained rotation per axis:
* <ul>
* <li>y - heading - {@link #rotateByAngleY(float)}</li>
* <li>z - attitude - {@link #rotateByAngleZ(float)}</li>
* <li>x - bank - {@link #rotateByAngleX(float)}</li>
* </ul>
* </p>
* <p>
* Implementation Details:
* <ul>
* <li> NOP if all angles are {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
* <li> result is {@link #normalize()}ed</li>
* </ul>
* </p>
* @param bankX the Euler pitch angle in radians. (rotation about the X axis)
* @param headingY the Euler yaw angle in radians. (rotation about the Y axis)
* @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis)
* @return this quaternion for chaining.
* @see #rotateByAngleY(float)
* @see #rotateByAngleZ(float)
* @see #rotateByAngleX(float)
* @see #setFromEuler(float, float, float)
*/
public final Quaternion rotateByEuler(final float bankX, final float headingY, final float attitudeZ) {
if ( VectorUtil.isZero(bankX, headingY, attitudeZ, FloatUtil.EPSILON) ) {
return this;
} else {
// setFromEuler muls: ( 8 + 4 ) , + quat muls 24 = 36
// this: 8 + 8 + 8 + 4 = 28 muls
return rotateByAngleY(headingY).rotateByAngleZ(attitudeZ).rotateByAngleX(bankX).normalize();
}
}
/***
* Rotate the given vector by this quaternion
* @param vecIn vector to be rotated
* @param vecOut result storage for rotated vector, maybe equal to vecIn for in-place rotation
*
* @return the given vecOut store for chaining
* @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q63">Matrix-FAQ Q63</a>
*/
public final Vec3f rotateVector(final Vec3f vecIn, final Vec3f vecOut) {
if( vecIn.isZero() ) {
vecOut.set(0, 0, 0);
} else {
final float vecX = vecIn.x();
final float vecY = vecIn.y();
final float vecZ = vecIn.z();
final float x_x = x*x;
final float y_y = y*y;
final float z_z = z*z;
final float w_w = w*w;
vecOut.setX( w_w * vecX
+ x_x * vecX
- z_z * vecX
- y_y * vecX
+ 2f * ( y*w*vecZ - z*w*vecY + y*x*vecY + z*x*vecZ ) );
;
vecOut.setY( y_y * vecY
- z_z * vecY
+ w_w * vecY
- x_x * vecY
+ 2f * ( x*y*vecX + z*y*vecZ + w*z*vecX - x*w*vecZ ) );;
vecOut.setZ( z_z * vecZ
- y_y * vecZ
- x_x * vecZ
+ w_w * vecZ
+ 2f * ( x*z*vecX + y*z*vecY - w*y*vecX + w*x*vecY ) );
}
return vecOut;
}
/**
* Set this quaternion to a spherical linear interpolation
* between the given start and end quaternions by the given change amount.
* <p>
* Note: Method <i>does not</i> normalize this quaternion!
* </p>
*
* @param a start quaternion
* @param b end quaternion
* @param changeAmnt float between 0 and 1 representing interpolation.
* @return this quaternion for chaining.
* @see <a href="http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/">euclideanspace.com-QuaternionSlerp</a>
*/
public final Quaternion setSlerp(final Quaternion a, final Quaternion b, final float changeAmnt) {
// System.err.println("Slerp.0: A "+a+", B "+b+", t "+changeAmnt);
if (changeAmnt == 0.0f) {
set(a);
} else if (changeAmnt == 1.0f) {
set(b);
} else {
float bx = b.x;
float by = b.y;
float bz = b.z;
float bw = b.w;
// Calculate angle between them (quat dot product)
float cosHalfTheta = a.x * bx + a.y * by + a.z * bz + a.w * bw;
final float scale0, scale1;
if( cosHalfTheta >= 0.95f ) {
// quaternions are close, just use linear interpolation
scale0 = 1.0f - changeAmnt;
scale1 = changeAmnt;
// System.err.println("Slerp.1: Linear Interpol; cosHalfTheta "+cosHalfTheta);
} else if ( cosHalfTheta <= -0.99f ) {
// the quaternions are nearly opposite,
// we can pick any axis normal to a,b to do the rotation
scale0 = 0.5f;
scale1 = 0.5f;
// System.err.println("Slerp.2: Any; cosHalfTheta "+cosHalfTheta);
} else {
// System.err.println("Slerp.3: cosHalfTheta "+cosHalfTheta);
if( cosHalfTheta <= -FloatUtil.EPSILON ) { // FIXME: .. or shall we use the upper bound 'cosHalfTheta < FloatUtil.EPSILON' ?
// Negate the second quaternion and the result of the dot product (Inversion)
bx *= -1f;
by *= -1f;
bz *= -1f;
bw *= -1f;
cosHalfTheta *= -1f;
// System.err.println("Slerp.4: Inverted cosHalfTheta "+cosHalfTheta);
}
final float halfTheta = FloatUtil.acos(cosHalfTheta);
final float sinHalfTheta = FloatUtil.sqrt(1.0f - cosHalfTheta*cosHalfTheta);
// if theta = 180 degrees then result is not fully defined
// we could rotate around any axis normal to qa or qb
if ( Math.abs(sinHalfTheta) < 0.001f ){ // fabs is floating point absolute
scale0 = 0.5f;
scale1 = 0.5f;
// throw new InternalError("XXX"); // FIXME should not be reached due to above inversion ?
} else {
// Calculate the scale for q1 and q2, according to the angle and
// it's sine value
scale0 = FloatUtil.sin((1f - changeAmnt) * halfTheta) / sinHalfTheta;
scale1 = FloatUtil.sin(changeAmnt * halfTheta) / sinHalfTheta;
}
}
x = a.x * scale0 + bx * scale1;
y = a.y * scale0 + by * scale1;
z = a.z * scale0 + bz * scale1;
w = a.w * scale0 + bw * scale1;
}
// System.err.println("Slerp.X: Result "+this);
return this;
}
/**
* Set this quaternion to equal the rotation required
* to point the z-axis at <i>direction</i> and the y-axis to <i>up</i>.
* <p>
* Implementation generates a 3x3 matrix
* and is equal with ProjectFloat's lookAt(..).<br/>
* </p>
* Implementation Details:
* <ul>
* <li> result is {@link #normalize()}ed</li>
* </ul>
* </p>
* @param directionIn where to <i>look</i> at
* @param upIn a vector indicating the local <i>up</i> direction.
* @param xAxisOut vector storing the <i>orthogonal</i> x-axis of the coordinate system.
* @param yAxisOut vector storing the <i>orthogonal</i> y-axis of the coordinate system.
* @param zAxisOut vector storing the <i>orthogonal</i> z-axis of the coordinate system.
* @return this quaternion for chaining.
* @see <a href="http://www.euclideanspace.com/maths/algebra/vectors/lookat/index.htm">euclideanspace.com-LookUp</a>
*/
public Quaternion setLookAt(final Vec3f directionIn, final Vec3f upIn,
final Vec3f xAxisOut, final Vec3f yAxisOut, final Vec3f zAxisOut) {
// Z = norm(dir)
zAxisOut.set(directionIn).normalize();
// X = upIn x Z
// (borrow yAxisOut for upNorm)
yAxisOut.set(upIn).normalize();
xAxisOut.cross(yAxisOut, zAxisOut).normalize();
// Y = Z x X
//
yAxisOut.cross(zAxisOut, xAxisOut).normalize();
/**
final float m00 = xAxisOut[0];
final float m01 = yAxisOut[0];
final float m02 = zAxisOut[0];
final float m10 = xAxisOut[1];
final float m11 = yAxisOut[1];
final float m12 = zAxisOut[1];
final float m20 = xAxisOut[2];
final float m21 = yAxisOut[2];
final float m22 = zAxisOut[2];
*/
return setFromAxes(xAxisOut, yAxisOut, zAxisOut).normalize();
}
//
// Conversions
//
/**
* Initialize this quaternion from two vectors
* <pre>
* q = (s,v) = (v1•v2 , v1 × v2),
* angle = angle(v1, v2) = v1•v2
* axis = normal(v1 x v2)
* </pre>
* <p>
* Implementation Details:
* <ul>
* <li> {@link #setIdentity()} if square vector-length is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
* </ul>
* </p>
* @param v1 not normalized
* @param v2 not normalized
* @param tmpPivotVec temp storage for cross product
* @param tmpNormalVec temp storage to normalize vector
* @return this quaternion for chaining.
*/
public final Quaternion setFromVectors(final Vec3f v1, final Vec3f v2, final Vec3f tmpPivotVec, final Vec3f tmpNormalVec) {
final float factor = v1.length() * v2.length();
if ( FloatUtil.isZero(factor, FloatUtil.EPSILON ) ) {
return setIdentity();
} else {
final float dot = v1.dot(v2) / factor; // normalize
final float theta = FloatUtil.acos(Math.max(-1.0f, Math.min(dot, 1.0f))); // clipping [-1..1]
tmpPivotVec.cross(v1, v2);
if ( dot < 0.0f && FloatUtil.isZero( tmpPivotVec.length(), FloatUtil.EPSILON ) ) {
// Vectors parallel and opposite direction, therefore a rotation of 180 degrees about any vector
// perpendicular to this vector will rotate vector a onto vector b.
//
// The following guarantees the dot-product will be 0.0.
int dominantIndex;
if (Math.abs(v1.x()) > Math.abs(v1.y())) {
if (Math.abs(v1.x()) > Math.abs(v1.z())) {
dominantIndex = 0;
} else {
dominantIndex = 2;
}
} else {
if (Math.abs(v1.y()) > Math.abs(v1.z())) {
dominantIndex = 1;
} else {
dominantIndex = 2;
}
}
tmpPivotVec.set( dominantIndex, -v1.get( (dominantIndex + 1) % 3 ) );
tmpPivotVec.set( (dominantIndex + 1) % 3, v1.get( dominantIndex ) );
tmpPivotVec.set( (dominantIndex + 2) % 3, 0f );
}
return setFromAngleAxis(theta, tmpPivotVec, tmpNormalVec);
}
}
/**
* Initialize this quaternion from two normalized vectors
* <pre>
* q = (s,v) = (v1•v2 , v1 × v2),
* angle = angle(v1, v2) = v1•v2
* axis = v1 x v2
* </pre>
* <p>
* Implementation Details:
* <ul>
* <li> {@link #setIdentity()} if square vector-length is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
* </ul>
* </p>
* @param v1 normalized
* @param v2 normalized
* @param tmpPivotVec temp storage for cross product
* @return this quaternion for chaining.
*/
public final Quaternion setFromNormalVectors(final Vec3f v1, final Vec3f v2, final Vec3f tmpPivotVec) {
final float factor = v1.length() * v2.length();
if ( FloatUtil.isZero(factor, FloatUtil.EPSILON ) ) {
return setIdentity();
} else {
final float dot = v1.dot(v2) / factor; // normalize
final float theta = FloatUtil.acos(Math.max(-1.0f, Math.min(dot, 1.0f))); // clipping [-1..1]
tmpPivotVec.cross(v1, v2);
if ( dot < 0.0f && FloatUtil.isZero( tmpPivotVec.length(), FloatUtil.EPSILON ) ) {
// Vectors parallel and opposite direction, therefore a rotation of 180 degrees about any vector
// perpendicular to this vector will rotate vector a onto vector b.
//
// The following guarantees the dot-product will be 0.0.
int dominantIndex;
if (Math.abs(v1.x()) > Math.abs(v1.y())) {
if (Math.abs(v1.x()) > Math.abs(v1.z())) {
dominantIndex = 0;
} else {
dominantIndex = 2;
}
} else {
if (Math.abs(v1.y()) > Math.abs(v1.z())) {
dominantIndex = 1;
} else {
dominantIndex = 2;
}
}
tmpPivotVec.set( dominantIndex, -v1.get( (dominantIndex + 1) % 3 ) );
tmpPivotVec.set( (dominantIndex + 1) % 3, v1.get( dominantIndex ) );
tmpPivotVec.set( (dominantIndex + 2) % 3, 0f );
}
return setFromAngleNormalAxis(theta, tmpPivotVec);
}
}
/***
* Initialize this quaternion with given non-normalized axis vector and rotation angle
* <p>
* Implementation Details:
* <ul>
* <li> {@link #setIdentity()} if axis is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
* </ul>
* </p>
* @param angle rotation angle (rads)
* @param vector axis vector not normalized
* @param tmpV3f temp storage to normalize vector
* @return this quaternion for chaining.
*
* @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56">Matrix-FAQ Q56</a>
* @see #toAngleAxis(Vec3f)
*/
public final Quaternion setFromAngleAxis(final float angle, final Vec3f vector, final Vec3f tmpV3f) {
tmpV3f.set(vector).normalize();
return setFromAngleNormalAxis(angle, tmpV3f);
}
/***
* Initialize this quaternion with given normalized axis vector and rotation angle
* <p>
* Implementation Details:
* <ul>
* <li> {@link #setIdentity()} if axis is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
* </ul>
* </p>
* @param angle rotation angle (rads)
* @param vector axis vector normalized
* @return this quaternion for chaining.
*
* @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56">Matrix-FAQ Q56</a>
* @see #toAngleAxis(Vec3f)
*/
public final Quaternion setFromAngleNormalAxis(final float angle, final Vec3f vector) {
if( vector.isZero() ) {
setIdentity();
} else {
final float halfangle = angle * 0.5f;
final float sin = FloatUtil.sin(halfangle);
x = vector.x() * sin;
y = vector.y() * sin;
z = vector.z() * sin;
w = FloatUtil.cos(halfangle);
}
return this;
}
/**
* Transform the rotational quaternion to axis based rotation angles
*
* @param axis storage for computed axis
* @return the rotation angle in radians
* @see #setFromAngleAxis(float, Vec3f, Vec3f)
*/
public final float toAngleAxis(final Vec3f axis) {
final float sqrLength = x*x + y*y + z*z;
float angle;
if ( FloatUtil.isZero(sqrLength, FloatUtil.EPSILON) ) { // length is ~0
angle = 0.0f;
axis.set( 1.0f, 0.0f, 0.0f );
} else {
angle = FloatUtil.acos(w) * 2.0f;
final float invLength = 1.0f / FloatUtil.sqrt(sqrLength);
axis.set( x * invLength,
y * invLength,
z * invLength );
}
return angle;
}
/**
* Initializes this quaternion from the given Euler rotation array <code>angradXYZ</code> in radians.
* <p>
* The <code>angradXYZ</code> vector is laid out in natural order:
* <ul>
* <li>x - bank</li>
* <li>y - heading</li>
* <li>z - attitude</li>
* </ul>
* </p>
* For details see {@link #setFromEuler(float, float, float)}.
* @param angradXYZ euler angle vector in radians holding x-bank, y-heading and z-attitude
* @return this quaternion for chaining.
* @see #setFromEuler(float, float, float)
*/
public final Quaternion setFromEuler(final Vec3f angradXYZ) {
return setFromEuler(angradXYZ.x(), angradXYZ.y(), angradXYZ.z());
}
/**
* Initializes this quaternion from the given Euler rotation angles in radians.
* <p>
* The rotations are applied in the given order:
* <ul>
* <li>y - heading</li>
* <li>z - attitude</li>
* <li>x - bank</li>
* </ul>
* </p>
* <p>
* Implementation Details:
* <ul>
* <li> {@link #setIdentity()} if all angles are {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
* <li> result is {@link #normalize()}ed</li>
* </ul>
* </p>
* @param bankX the Euler pitch angle in radians. (rotation about the X axis)
* @param headingY the Euler yaw angle in radians. (rotation about the Y axis)
* @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis)
* @return this quaternion for chaining.
*
* @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q60">Matrix-FAQ Q60</a>
* @see <a href="http://vered.rose.utoronto.ca/people/david_dir/GEMS/GEMS.html">Gems</a>
* @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm">euclideanspace.com-eulerToQuaternion</a>
* @see #toEuler(Vec3f)
*/
public final Quaternion setFromEuler(final float bankX, final float headingY, final float attitudeZ) {
if ( VectorUtil.isZero(bankX, headingY, attitudeZ, FloatUtil.EPSILON) ) {
return setIdentity();
} else {
float angle = headingY * 0.5f;
final float sinHeadingY = FloatUtil.sin(angle);
final float cosHeadingY = FloatUtil.cos(angle);
angle = attitudeZ * 0.5f;
final float sinAttitudeZ = FloatUtil.sin(angle);
final float cosAttitudeZ = FloatUtil.cos(angle);
angle = bankX * 0.5f;
final float sinBankX = FloatUtil.sin(angle);
final float cosBankX = FloatUtil.cos(angle);
// variables used to reduce multiplication calls.
final float cosHeadingXcosAttitude = cosHeadingY * cosAttitudeZ;
final float sinHeadingXsinAttitude = sinHeadingY * sinAttitudeZ;
final float cosHeadingXsinAttitude = cosHeadingY * sinAttitudeZ;
final float sinHeadingXcosAttitude = sinHeadingY * cosAttitudeZ;
w = cosHeadingXcosAttitude * cosBankX - sinHeadingXsinAttitude * sinBankX;
x = cosHeadingXcosAttitude * sinBankX + sinHeadingXsinAttitude * cosBankX;
y = sinHeadingXcosAttitude * cosBankX + cosHeadingXsinAttitude * sinBankX;
z = cosHeadingXsinAttitude * cosBankX - sinHeadingXcosAttitude * sinBankX;
return normalize();
}
}
/**
* Transform this quaternion to Euler rotation angles in radians (pitchX, yawY and rollZ).
* <p>
* The <code>result</code> array is laid out in natural order:
* <ul>
* <li>x - bank</li>
* <li>y - heading</li>
* <li>z - attitude</li>
* </ul>
* </p>
*
* @param result euler angle result vector for radians x-bank, y-heading and z-attitude
* @return the Vec3f `result` filled with x-bank, y-heading and z-attitude
* @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/index.htm">euclideanspace.com-quaternionToEuler</a>
* @see #setFromEuler(float, float, float)
*/
public Vec3f toEuler(final Vec3f result) {
final float sqw = w*w;
final float sqx = x*x;
final float sqy = y*y;
final float sqz = z*z;
final float unit = sqx + sqy + sqz + sqw; // if normalized is one, otherwise, is correction factor
final float test = x*y + z*w;
if (test > 0.499f * unit) { // singularity at north pole
result.set( 0f, // x-bank
2f * FloatUtil.atan2(x, w), // y-heading
FloatUtil.HALF_PI ); // z-attitude
} else if (test < -0.499f * unit) { // singularity at south pole
result.set( 0f, // x-bank
-2 * FloatUtil.atan2(x, w), // y-heading
-FloatUtil.HALF_PI ); // z-attitude
} else {
result.set( FloatUtil.atan2(2f * x * w - 2 * y * z, -sqx + sqy - sqz + sqw), // x-bank
FloatUtil.atan2(2f * y * w - 2 * x * z, sqx - sqy - sqz + sqw), // y-heading
FloatUtil.asin( 2f * test / unit) ); // z-attitude
}
return result;
}
/**
* Compute the quaternion from a 3x3 column rotation matrix
* <p>
* See <a href="ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z">Graphics Gems Code</a>,<br/>
* <a href="http://mathworld.wolfram.com/MatrixTrace.html">MatrixTrace</a>.
* </p>
* <p>
* Buggy <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q55">Matrix-FAQ Q55</a>
* </p>
*
* @return this quaternion for chaining.
* @see #setFromMatrix(Matrix4f)
*/
public Quaternion setFromMatrix(final float m00, final float m01, final float m02,
final float m10, final float m11, final float m12,
final float m20, final float m21, final float m22) {
// Note: Other implementations uses 'T' w/o '+1f' and compares 'T >= 0' while adding missing 1f in sqrt expr.
// However .. this causes setLookAt(..) to fail and actually violates the 'trace definition'.
// The trace T is the sum of the diagonal elements; see
// http://mathworld.wolfram.com/MatrixTrace.html
final float T = m00 + m11 + m22 + 1f;
// System.err.println("setFromMatrix.0 T "+T+", m00 "+m00+", m11 "+m11+", m22 "+m22);
if ( T > 0f ) {
// System.err.println("setFromMatrix.1");
final float S = 0.5f / FloatUtil.sqrt(T); // S = 1 / ( 2 t )
w = 0.25f / S; // w = 1 / ( 4 S ) = t / 2
x = ( m21 - m12 ) * S;
y = ( m02 - m20 ) * S;
z = ( m10 - m01 ) * S;
} else if ( m00 > m11 && m00 > m22) {
// System.err.println("setFromMatrix.2");
final float S = 0.5f / FloatUtil.sqrt(1.0f + m00 - m11 - m22); // S=4*qx
w = ( m21 - m12 ) * S;
x = 0.25f / S;
y = ( m10 + m01 ) * S;
z = ( m02 + m20 ) * S;
} else if ( m11 > m22 ) {
// System.err.println("setFromMatrix.3");
final float S = 0.5f / FloatUtil.sqrt(1.0f + m11 - m00 - m22); // S=4*qy
w = ( m02 - m20 ) * S;
x = ( m20 + m01 ) * S;
y = 0.25f / S;
z = ( m21 + m12 ) * S;
} else {
// System.err.println("setFromMatrix.3");
final float S = 0.5f / FloatUtil.sqrt(1.0f + m22 - m00 - m11); // S=4*qz
w = ( m10 - m01 ) * S;
x = ( m02 + m20 ) * S;
y = ( m21 + m12 ) * S;
z = 0.25f / S;
}
return this;
}
/**
* Compute the quaternion from a 3x3 column rotation matrix
* <p>
* See <a href="ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z">Graphics Gems Code</a>,<br/>
* <a href="http://mathworld.wolfram.com/MatrixTrace.html">MatrixTrace</a>.
* </p>
* <p>
* Buggy <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q55">Matrix-FAQ Q55</a>
* </p>
*
* @return this quaternion for chaining.
* @see Matrix4f#getRotation(Quaternion)
* @see #setFromMatrix(float, float, float, float, float, float, float, float, float)
*/
public Quaternion setFromMatrix(final Matrix4f m) {
return m.getRotation(this);
}
/**
* Transform this quaternion to a normalized 4x4 column matrix representing the rotation.
* <p>
* Implementation Details:
* <ul>
* <li> makes identity matrix if {@link #magnitudeSquared()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
* </ul>
* </p>
*
* @param matrix float[16] store for the resulting normalized column matrix 4x4
* @return the given matrix store
* @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54">Matrix-FAQ Q54</a>
* @see #setFromMatrix(Matrix4f)
* @see #setFromMatrix(float, float, float, float, float, float, float, float, float)
*/
public final float[] toMatrix(final float[] matrix) {
// pre-multiply scaled-reciprocal-magnitude to reduce multiplications
final float norm = magnitudeSquared();
if ( FloatUtil.isZero(norm) ) {
// identity matrix -> srecip = 0f
return FloatUtil.makeIdentity(matrix);
}
final float srecip;
if ( FloatUtil.isEqual(1f, norm) ) {
srecip = 2f;
} else {
srecip = 2.0f / norm;
}
final float xs = srecip * x;
final float ys = srecip * y;
final float zs = srecip * z;
final float xx = x * xs;
final float xy = x * ys;
final float xz = x * zs;
final float xw = xs * w;
final float yy = y * ys;
final float yz = y * zs;
final float yw = ys * w;
final float zz = z * zs;
final float zw = zs * w;
matrix[0+0*4] = 1f - ( yy + zz );
matrix[0+1*4] = ( xy - zw );
matrix[0+2*4] = ( xz + yw );
matrix[0+3*4] = 0f;
matrix[1+0*4] = ( xy + zw );
matrix[1+1*4] = 1f - ( xx + zz );
matrix[1+2*4] = ( yz - xw );
matrix[1+3*4] = 0f;
matrix[2+0*4] = ( xz - yw );
matrix[2+1*4] = ( yz + xw );
matrix[2+2*4] = 1f - ( xx + yy );
matrix[2+3*4] = 0f;
matrix[3+0*4] = 0f;
matrix[3+1*4] = 0f;
matrix[3+2*4] = 0f;
matrix[3+3*4] = 1f;
return matrix;
}
/**
* Transform this quaternion to a normalized 4x4 column matrix representing the rotation.
* <p>
* Implementation Details:
* <ul>
* <li> makes identity matrix if {@link #magnitudeSquared()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
* </ul>
* </p>
*
* @param matrix store for the resulting normalized column matrix 4x4
* @return the given matrix store
* @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54">Matrix-FAQ Q54</a>
* @see #setFromMatrix(float, float, float, float, float, float, float, float, float)
* @see Matrix4f#setToRotation(Quaternion)
*/
public final Matrix4f toMatrix(final Matrix4f matrix) {
return matrix.setToRotation(this);
}
/**
* Initializes this quaternion to represent a rotation formed by the given three <i>orthogonal</i> axes.
* <p>
* No validation whether the axes are <i>orthogonal</i> is performed.
* </p>
*
* @param xAxis vector representing the <i>orthogonal</i> x-axis of the coordinate system.
* @param yAxis vector representing the <i>orthogonal</i> y-axis of the coordinate system.
* @param zAxis vector representing the <i>orthogonal</i> z-axis of the coordinate system.
* @return this quaternion for chaining.
*/
public final Quaternion setFromAxes(final Vec3f xAxis, final Vec3f yAxis, final Vec3f zAxis) {
return setFromMatrix(xAxis.x(), yAxis.x(), zAxis.x(),
xAxis.y(), yAxis.y(), zAxis.y(),
xAxis.z(), yAxis.z(), zAxis.z());
}
/**
* Extracts this quaternion's <i>orthogonal</i> rotation axes.
*
* @param xAxis vector representing the <i>orthogonal</i> x-axis of the coordinate system.
* @param yAxis vector representing the <i>orthogonal</i> y-axis of the coordinate system.
* @param zAxis vector representing the <i>orthogonal</i> z-axis of the coordinate system.
* @param tmpMat4 temporary float[4] matrix, used to transform this quaternion to a matrix.
*/
public void toAxes(final Vec3f xAxis, final Vec3f yAxis, final Vec3f zAxis, final Matrix4f tmpMat4) {
tmpMat4.setToRotation(this);
tmpMat4.getColumn(2, zAxis);
tmpMat4.getColumn(1, yAxis);
tmpMat4.getColumn(0, xAxis);
}
/**
* Check if the the 3x3 matrix (param) is in fact an affine rotational
* matrix
*
* @param m 3x3 column matrix
* @return true if representing a rotational matrix, false otherwise
*/
@Deprecated
public final boolean isRotationMatrix3f(final float[] m) {
final float epsilon = 0.01f; // margin to allow for rounding errors
if (Math.abs(m[0] * m[3] + m[3] * m[4] + m[6] * m[7]) > epsilon)
return false;
if (Math.abs(m[0] * m[2] + m[3] * m[5] + m[6] * m[8]) > epsilon)
return false;
if (Math.abs(m[1] * m[2] + m[4] * m[5] + m[7] * m[8]) > epsilon)
return false;
if (Math.abs(m[0] * m[0] + m[3] * m[3] + m[6] * m[6] - 1) > epsilon)
return false;
if (Math.abs(m[1] * m[1] + m[4] * m[4] + m[7] * m[7] - 1) > epsilon)
return false;
if (Math.abs(m[2] * m[2] + m[5] * m[5] + m[8] * m[8] - 1) > epsilon)
return false;
return (Math.abs(determinant3f(m) - 1) < epsilon);
}
@Deprecated
private final float determinant3f(final float[] m) {
return m[0] * m[4] * m[8] + m[3] * m[7] * m[2] + m[6] * m[1] * m[5]
- m[0] * m[7] * m[5] - m[3] * m[1] * m[8] - m[6] * m[4] * m[2];
}
//
// std java overrides
//
/**
* @param o the object to compare for equality
* @return true if this quaternion and the provided quaternion have roughly the same x, y, z and w values.
*/
@Override
public boolean equals(final Object o) {
if (this == o) {
return true;
}
if (!(o instanceof Quaternion)) {
return false;
}
final Quaternion comp = (Quaternion) o;
return Math.abs(x - comp.x()) <= ALLOWED_DEVIANCE &&
Math.abs(y - comp.y()) <= ALLOWED_DEVIANCE &&
Math.abs(z - comp.z()) <= ALLOWED_DEVIANCE &&
Math.abs(w - comp.w()) <= ALLOWED_DEVIANCE;
}
@Override
public final int hashCode() {
throw new InternalError("hashCode not designed");
}
@Override
public String toString() {
return "Quat[x "+x+", y "+y+", z "+z+", w "+w+"]";
}
}
|