diff options
author | Sven Gothel <[email protected]> | 2023-05-03 16:17:49 +0200 |
---|---|---|
committer | Sven Gothel <[email protected]> | 2023-05-03 16:17:49 +0200 |
commit | ec167fd05661a5b02dd406c87081f84a0f8dd77d (patch) | |
tree | 9c4669e471c9969bda59265381b18d2d416db060 /core/ambidefs.h | |
parent | 0d14d30808cfe7b9e3413353e3eef8a0f201399a (diff) | |
parent | d3875f333fb6abe2f39d82caca329414871ae53b (diff) |
Merge branch 'v1.23.1'
Resolved Conflicts:
CMakeLists.txt
Diffstat (limited to 'core/ambidefs.h')
-rw-r--r-- | core/ambidefs.h | 250 |
1 files changed, 250 insertions, 0 deletions
diff --git a/core/ambidefs.h b/core/ambidefs.h new file mode 100644 index 00000000..b7d2bcd1 --- /dev/null +++ b/core/ambidefs.h @@ -0,0 +1,250 @@ +#ifndef CORE_AMBIDEFS_H +#define CORE_AMBIDEFS_H + +#include <array> +#include <stddef.h> +#include <stdint.h> + +#include "alnumbers.h" + + +using uint = unsigned int; + +/* The maximum number of Ambisonics channels. For a given order (o), the size + * needed will be (o+1)**2, thus zero-order has 1, first-order has 4, second- + * order has 9, third-order has 16, and fourth-order has 25. + */ +constexpr uint8_t MaxAmbiOrder{3}; +constexpr inline size_t AmbiChannelsFromOrder(size_t order) noexcept +{ return (order+1) * (order+1); } +constexpr size_t MaxAmbiChannels{AmbiChannelsFromOrder(MaxAmbiOrder)}; + +/* A bitmask of ambisonic channels for 0 to 4th order. This only specifies up + * to 4th order, which is the highest order a 32-bit mask value can specify (a + * 64-bit mask could handle up to 7th order). + */ +constexpr uint Ambi0OrderMask{0x00000001}; +constexpr uint Ambi1OrderMask{0x0000000f}; +constexpr uint Ambi2OrderMask{0x000001ff}; +constexpr uint Ambi3OrderMask{0x0000ffff}; +constexpr uint Ambi4OrderMask{0x01ffffff}; + +/* A bitmask of ambisonic channels with height information. If none of these + * channels are used/needed, there's no height (e.g. with most surround sound + * speaker setups). This is ACN ordering, with bit 0 being ACN 0, etc. + */ +constexpr uint AmbiPeriphonicMask{0xfe7ce4}; + +/* The maximum number of ambisonic channels for 2D (non-periphonic) + * representation. This is 2 per each order above zero-order, plus 1 for zero- + * order. Or simply, o*2 + 1. + */ +constexpr inline size_t Ambi2DChannelsFromOrder(size_t order) noexcept +{ return order*2 + 1; } +constexpr size_t MaxAmbi2DChannels{Ambi2DChannelsFromOrder(MaxAmbiOrder)}; + + +/* NOTE: These are scale factors as applied to Ambisonics content. Decoder + * coefficients should be divided by these values to get proper scalings. + */ +struct AmbiScale { + static auto& FromN3D() noexcept + { + static constexpr const std::array<float,MaxAmbiChannels> ret{{ + 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, + 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f + }}; + return ret; + } + static auto& FromSN3D() noexcept + { + static constexpr const std::array<float,MaxAmbiChannels> ret{{ + 1.000000000f, /* ACN 0, sqrt(1) */ + 1.732050808f, /* ACN 1, sqrt(3) */ + 1.732050808f, /* ACN 2, sqrt(3) */ + 1.732050808f, /* ACN 3, sqrt(3) */ + 2.236067978f, /* ACN 4, sqrt(5) */ + 2.236067978f, /* ACN 5, sqrt(5) */ + 2.236067978f, /* ACN 6, sqrt(5) */ + 2.236067978f, /* ACN 7, sqrt(5) */ + 2.236067978f, /* ACN 8, sqrt(5) */ + 2.645751311f, /* ACN 9, sqrt(7) */ + 2.645751311f, /* ACN 10, sqrt(7) */ + 2.645751311f, /* ACN 11, sqrt(7) */ + 2.645751311f, /* ACN 12, sqrt(7) */ + 2.645751311f, /* ACN 13, sqrt(7) */ + 2.645751311f, /* ACN 14, sqrt(7) */ + 2.645751311f, /* ACN 15, sqrt(7) */ + }}; + return ret; + } + static auto& FromFuMa() noexcept + { + static constexpr const std::array<float,MaxAmbiChannels> ret{{ + 1.414213562f, /* ACN 0 (W), sqrt(2) */ + 1.732050808f, /* ACN 1 (Y), sqrt(3) */ + 1.732050808f, /* ACN 2 (Z), sqrt(3) */ + 1.732050808f, /* ACN 3 (X), sqrt(3) */ + 1.936491673f, /* ACN 4 (V), sqrt(15)/2 */ + 1.936491673f, /* ACN 5 (T), sqrt(15)/2 */ + 2.236067978f, /* ACN 6 (R), sqrt(5) */ + 1.936491673f, /* ACN 7 (S), sqrt(15)/2 */ + 1.936491673f, /* ACN 8 (U), sqrt(15)/2 */ + 2.091650066f, /* ACN 9 (Q), sqrt(35/8) */ + 1.972026594f, /* ACN 10 (O), sqrt(35)/3 */ + 2.231093404f, /* ACN 11 (M), sqrt(224/45) */ + 2.645751311f, /* ACN 12 (K), sqrt(7) */ + 2.231093404f, /* ACN 13 (L), sqrt(224/45) */ + 1.972026594f, /* ACN 14 (N), sqrt(35)/3 */ + 2.091650066f, /* ACN 15 (P), sqrt(35/8) */ + }}; + return ret; + } + static auto& FromUHJ() noexcept + { + static constexpr const std::array<float,MaxAmbiChannels> ret{{ + 1.000000000f, /* ACN 0 (W), sqrt(1) */ + 1.224744871f, /* ACN 1 (Y), sqrt(3/2) */ + 1.224744871f, /* ACN 2 (Z), sqrt(3/2) */ + 1.224744871f, /* ACN 3 (X), sqrt(3/2) */ + /* Higher orders not relevant for UHJ. */ + 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, + }}; + return ret; + } + + /* Retrieves per-order HF scaling factors for "upsampling" ambisonic data. */ + static std::array<float,MaxAmbiOrder+1> GetHFOrderScales(const uint src_order, + const uint dev_order, const bool horizontalOnly) noexcept; + + static const std::array<std::array<float,MaxAmbiChannels>,4> FirstOrderUp; + static const std::array<std::array<float,MaxAmbiChannels>,4> FirstOrder2DUp; + static const std::array<std::array<float,MaxAmbiChannels>,9> SecondOrderUp; + static const std::array<std::array<float,MaxAmbiChannels>,9> SecondOrder2DUp; + static const std::array<std::array<float,MaxAmbiChannels>,16> ThirdOrderUp; + static const std::array<std::array<float,MaxAmbiChannels>,16> ThirdOrder2DUp; + static const std::array<std::array<float,MaxAmbiChannels>,25> FourthOrder2DUp; +}; + +struct AmbiIndex { + static auto& FromFuMa() noexcept + { + static constexpr const std::array<uint8_t,MaxAmbiChannels> ret{{ + 0, /* W */ + 3, /* X */ + 1, /* Y */ + 2, /* Z */ + 6, /* R */ + 7, /* S */ + 5, /* T */ + 8, /* U */ + 4, /* V */ + 12, /* K */ + 13, /* L */ + 11, /* M */ + 14, /* N */ + 10, /* O */ + 15, /* P */ + 9, /* Q */ + }}; + return ret; + } + static auto& FromFuMa2D() noexcept + { + static constexpr const std::array<uint8_t,MaxAmbi2DChannels> ret{{ + 0, /* W */ + 3, /* X */ + 1, /* Y */ + 8, /* U */ + 4, /* V */ + 15, /* P */ + 9, /* Q */ + }}; + return ret; + } + + static auto& FromACN() noexcept + { + static constexpr const std::array<uint8_t,MaxAmbiChannels> ret{{ + 0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15 + }}; + return ret; + } + static auto& FromACN2D() noexcept + { + static constexpr const std::array<uint8_t,MaxAmbi2DChannels> ret{{ + 0, 1,3, 4,8, 9,15 + }}; + return ret; + } + + static auto& OrderFromChannel() noexcept + { + static constexpr const std::array<uint8_t,MaxAmbiChannels> ret{{ + 0, 1,1,1, 2,2,2,2,2, 3,3,3,3,3,3,3, + }}; + return ret; + } + static auto& OrderFrom2DChannel() noexcept + { + static constexpr const std::array<uint8_t,MaxAmbi2DChannels> ret{{ + 0, 1,1, 2,2, 3,3, + }}; + return ret; + } +}; + + +/** + * Calculates ambisonic encoder coefficients using the X, Y, and Z direction + * components, which must represent a normalized (unit length) vector. + * + * NOTE: The components use ambisonic coordinates. As a result: + * + * Ambisonic Y = OpenAL -X + * Ambisonic Z = OpenAL Y + * Ambisonic X = OpenAL -Z + * + * The components are ordered such that OpenAL's X, Y, and Z are the first, + * second, and third parameters respectively -- simply negate X and Z. + */ +constexpr auto CalcAmbiCoeffs(const float y, const float z, const float x) +{ + const float xx{x*x}, yy{y*y}, zz{z*z}, xy{x*y}, yz{y*z}, xz{x*z}; + + return std::array<float,MaxAmbiChannels>{{ + /* Zeroth-order */ + 1.0f, /* ACN 0 = 1 */ + /* First-order */ + al::numbers::sqrt3_v<float> * y, /* ACN 1 = sqrt(3) * Y */ + al::numbers::sqrt3_v<float> * z, /* ACN 2 = sqrt(3) * Z */ + al::numbers::sqrt3_v<float> * x, /* ACN 3 = sqrt(3) * X */ + /* Second-order */ + 3.872983346e+00f * xy, /* ACN 4 = sqrt(15) * X * Y */ + 3.872983346e+00f * yz, /* ACN 5 = sqrt(15) * Y * Z */ + 1.118033989e+00f * (3.0f*zz - 1.0f), /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */ + 3.872983346e+00f * xz, /* ACN 7 = sqrt(15) * X * Z */ + 1.936491673e+00f * (xx - yy), /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */ + /* Third-order */ + 2.091650066e+00f * (y*(3.0f*xx - yy)), /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */ + 1.024695076e+01f * (z*xy), /* ACN 10 = sqrt(105) * Z * X * Y */ + 1.620185175e+00f * (y*(5.0f*zz - 1.0f)), /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */ + 1.322875656e+00f * (z*(5.0f*zz - 3.0f)), /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */ + 1.620185175e+00f * (x*(5.0f*zz - 1.0f)), /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */ + 5.123475383e+00f * (z*(xx - yy)), /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */ + 2.091650066e+00f * (x*(xx - 3.0f*yy)), /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */ + /* Fourth-order */ + /* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */ + /* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */ + /* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */ + /* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3) */ + /* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */ + /* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */ + /* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */ + /* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */ + /* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */ + }}; +} + +#endif /* CORE_AMBIDEFS_H */ |