diff options
Diffstat (limited to 'alc/effects')
-rw-r--r-- | alc/effects/autowah.cpp | 86 | ||||
-rw-r--r-- | alc/effects/base.h | 43 | ||||
-rw-r--r-- | alc/effects/chorus.cpp | 117 | ||||
-rw-r--r-- | alc/effects/compressor.cpp | 13 | ||||
-rw-r--r-- | alc/effects/convolution.cpp | 160 | ||||
-rw-r--r-- | alc/effects/dedicated.cpp | 94 | ||||
-rw-r--r-- | alc/effects/distortion.cpp | 29 | ||||
-rw-r--r-- | alc/effects/echo.cpp | 45 | ||||
-rw-r--r-- | alc/effects/equalizer.cpp | 36 | ||||
-rw-r--r-- | alc/effects/fshifter.cpp | 30 | ||||
-rw-r--r-- | alc/effects/modulator.cpp | 24 | ||||
-rw-r--r-- | alc/effects/null.cpp | 4 | ||||
-rw-r--r-- | alc/effects/pshifter.cpp | 65 | ||||
-rw-r--r-- | alc/effects/reverb.cpp | 368 | ||||
-rw-r--r-- | alc/effects/vmorpher.cpp | 127 |
15 files changed, 638 insertions, 603 deletions
diff --git a/alc/effects/autowah.cpp b/alc/effects/autowah.cpp index 4f874ef2..424230e8 100644 --- a/alc/effects/autowah.cpp +++ b/alc/effects/autowah.cpp @@ -50,35 +50,37 @@ constexpr float QFactor{5.0f}; struct AutowahState final : public EffectState { /* Effect parameters */ - float mAttackRate; - float mReleaseRate; - float mResonanceGain; - float mPeakGain; - float mFreqMinNorm; - float mBandwidthNorm; - float mEnvDelay; + float mAttackRate{}; + float mReleaseRate{}; + float mResonanceGain{}; + float mPeakGain{}; + float mFreqMinNorm{}; + float mBandwidthNorm{}; + float mEnvDelay{}; /* Filter components derived from the envelope. */ - struct { - float cos_w0; - float alpha; - } mEnv[BufferLineSize]; + struct FilterParam { + float cos_w0{}; + float alpha{}; + }; + std::array<FilterParam,BufferLineSize> mEnv; - struct { + struct ChannelData { uint mTargetChannel{InvalidChannelIndex}; /* Effect filters' history. */ struct { - float z1, z2; + float z1{}, z2{}; } mFilter; /* Effect gains for each output channel */ - float mCurrentGain; - float mTargetGain; - } mChans[MaxAmbiChannels]; + float mCurrentGain{}; + float mTargetGain{}; + }; + std::array<ChannelData,MaxAmbiChannels> mChans; /* Effects buffers */ - alignas(16) float mBufferOut[BufferLineSize]; + alignas(16) FloatBufferLine mBufferOut{}; void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; @@ -86,8 +88,6 @@ struct AutowahState final : public EffectState { const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(AutowahState) }; void AutowahState::deviceUpdate(const DeviceBase*, const BufferStorage*) @@ -118,18 +118,19 @@ void AutowahState::deviceUpdate(const DeviceBase*, const BufferStorage*) } void AutowahState::update(const ContextBase *context, const EffectSlot *slot, - const EffectProps *props, const EffectTarget target) + const EffectProps *props_, const EffectTarget target) { + auto &props = std::get<AutowahProps>(*props_); const DeviceBase *device{context->mDevice}; const auto frequency = static_cast<float>(device->Frequency); - const float ReleaseTime{clampf(props->Autowah.ReleaseTime, 0.001f, 1.0f)}; + const float ReleaseTime{clampf(props.ReleaseTime, 0.001f, 1.0f)}; - mAttackRate = std::exp(-1.0f / (props->Autowah.AttackTime*frequency)); + mAttackRate = std::exp(-1.0f / (props.AttackTime*frequency)); mReleaseRate = std::exp(-1.0f / (ReleaseTime*frequency)); /* 0-20dB Resonance Peak gain */ - mResonanceGain = std::sqrt(std::log10(props->Autowah.Resonance)*10.0f / 3.0f); - mPeakGain = 1.0f - std::log10(props->Autowah.PeakGain / GainScale); + mResonanceGain = std::sqrt(std::log10(props.Resonance)*10.0f / 3.0f); + mPeakGain = 1.0f - std::log10(props.PeakGain / GainScale); mFreqMinNorm = MinFreq / frequency; mBandwidthNorm = (MaxFreq-MinFreq) / frequency; @@ -155,17 +156,16 @@ void AutowahState::process(const size_t samplesToDo, float env_delay{mEnvDelay}; for(size_t i{0u};i < samplesToDo;i++) { - float w0, sample, a; - /* Envelope follower described on the book: Audio Effects, Theory, * Implementation and Application. */ - sample = peak_gain * std::fabs(samplesIn[0][i]); - a = (sample > env_delay) ? attack_rate : release_rate; + const float sample{peak_gain * std::fabs(samplesIn[0][i])}; + const float a{(sample > env_delay) ? attack_rate : release_rate}; env_delay = lerpf(sample, env_delay, a); /* Calculate the cos and alpha components for this sample's filter. */ - w0 = minf((bandwidth*env_delay + freq_min), 0.46f) * (al::numbers::pi_v<float>*2.0f); + const float w0{minf((bandwidth*env_delay + freq_min), 0.46f) * + (al::numbers::pi_v<float>*2.0f)}; mEnv[i].cos_w0 = std::cos(w0); mEnv[i].alpha = std::sin(w0)/(2.0f * QFactor); } @@ -194,18 +194,18 @@ void AutowahState::process(const size_t samplesToDo, { const float alpha{mEnv[i].alpha}; const float cos_w0{mEnv[i].cos_w0}; - float input, output; - float a[3], b[3]; - - b[0] = 1.0f + alpha*res_gain; - b[1] = -2.0f * cos_w0; - b[2] = 1.0f - alpha*res_gain; - a[0] = 1.0f + alpha/res_gain; - a[1] = -2.0f * cos_w0; - a[2] = 1.0f - alpha/res_gain; - - input = insamples[i]; - output = input*(b[0]/a[0]) + z1; + + const std::array b{ + 1.0f + alpha*res_gain, + -2.0f * cos_w0, + 1.0f - alpha*res_gain}; + const std::array a{ + 1.0f + alpha/res_gain, + -2.0f * cos_w0, + 1.0f - alpha/res_gain}; + + const float input{insamples[i]}; + const float output{input*(b[0]/a[0]) + z1}; z1 = input*(b[1]/a[0]) - output*(a[1]/a[0]) + z2; z2 = input*(b[2]/a[0]) - output*(a[2]/a[0]); mBufferOut[i] = output; @@ -214,8 +214,8 @@ void AutowahState::process(const size_t samplesToDo, chandata->mFilter.z2 = z2; /* Now, mix the processed sound data to the output. */ - MixSamples({mBufferOut, samplesToDo}, samplesOut[outidx].data(), chandata->mCurrentGain, - chandata->mTargetGain, samplesToDo); + MixSamples({mBufferOut.data(), samplesToDo}, samplesOut[outidx].data(), + chandata->mCurrentGain, chandata->mTargetGain, samplesToDo); ++chandata; } } diff --git a/alc/effects/base.h b/alc/effects/base.h index 95695857..9bbbfc71 100644 --- a/alc/effects/base.h +++ b/alc/effects/base.h @@ -4,23 +4,30 @@ #include "core/effects/base.h" -EffectStateFactory *NullStateFactory_getFactory(void); -EffectStateFactory *ReverbStateFactory_getFactory(void); -EffectStateFactory *StdReverbStateFactory_getFactory(void); -EffectStateFactory *AutowahStateFactory_getFactory(void); -EffectStateFactory *ChorusStateFactory_getFactory(void); -EffectStateFactory *CompressorStateFactory_getFactory(void); -EffectStateFactory *DistortionStateFactory_getFactory(void); -EffectStateFactory *EchoStateFactory_getFactory(void); -EffectStateFactory *EqualizerStateFactory_getFactory(void); -EffectStateFactory *FlangerStateFactory_getFactory(void); -EffectStateFactory *FshifterStateFactory_getFactory(void); -EffectStateFactory *ModulatorStateFactory_getFactory(void); -EffectStateFactory *PshifterStateFactory_getFactory(void); -EffectStateFactory* VmorpherStateFactory_getFactory(void); - -EffectStateFactory *DedicatedStateFactory_getFactory(void); - -EffectStateFactory *ConvolutionStateFactory_getFactory(void); +/* This is a user config option for modifying the overall output of the reverb + * effect. + */ +inline float ReverbBoost{1.0f}; + + +EffectStateFactory *NullStateFactory_getFactory(); +EffectStateFactory *ReverbStateFactory_getFactory(); +EffectStateFactory *StdReverbStateFactory_getFactory(); +EffectStateFactory *AutowahStateFactory_getFactory(); +EffectStateFactory *ChorusStateFactory_getFactory(); +EffectStateFactory *CompressorStateFactory_getFactory(); +EffectStateFactory *DistortionStateFactory_getFactory(); +EffectStateFactory *EchoStateFactory_getFactory(); +EffectStateFactory *EqualizerStateFactory_getFactory(); +EffectStateFactory *FlangerStateFactory_getFactory(); +EffectStateFactory *FshifterStateFactory_getFactory(); +EffectStateFactory *ModulatorStateFactory_getFactory(); +EffectStateFactory *PshifterStateFactory_getFactory(); +EffectStateFactory* VmorpherStateFactory_getFactory(); + +EffectStateFactory *DedicatedDialogStateFactory_getFactory(); +EffectStateFactory *DedicatedLfeStateFactory_getFactory(); + +EffectStateFactory *ConvolutionStateFactory_getFactory(); #endif /* EFFECTS_BASE_H */ diff --git a/alc/effects/chorus.cpp b/alc/effects/chorus.cpp index 9cbc922f..bc6ddaf0 100644 --- a/alc/effects/chorus.cpp +++ b/alc/effects/chorus.cpp @@ -48,7 +48,14 @@ namespace { using uint = unsigned int; -struct ChorusState final : public EffectState { +constexpr auto inv_sqrt2 = static_cast<float>(1.0 / al::numbers::sqrt2); +constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f}); +constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f}); +constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2}); +constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2}); + + +struct ChorusState : public EffectState { std::vector<float> mDelayBuffer; uint mOffset{0}; @@ -58,16 +65,17 @@ struct ChorusState final : public EffectState { uint mLfoDisp{0}; /* Calculated delays to apply to the left and right outputs. */ - uint mModDelays[2][BufferLineSize]; + std::array<std::array<uint,BufferLineSize>,2> mModDelays{}; /* Temp storage for the modulated left and right outputs. */ - alignas(16) float mBuffer[2][BufferLineSize]; + alignas(16) std::array<FloatBufferLine,2> mBuffer{}; /* Gains for left and right outputs. */ - struct { - float Current[MaxAmbiChannels]{}; - float Target[MaxAmbiChannels]{}; - } mGains[2]; + struct OutGains { + std::array<float,MaxAmbiChannels> Current{}; + std::array<float,MaxAmbiChannels> Target{}; + }; + std::array<OutGains,2> mGains; /* effect parameters */ ChorusWaveform mWaveform{}; @@ -78,65 +86,81 @@ struct ChorusState final : public EffectState { void calcTriangleDelays(const size_t todo); void calcSinusoidDelays(const size_t todo); - void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; - void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, - const EffectTarget target) override; + void deviceUpdate(const DeviceBase *device, const float MaxDelay); + void update(const ContextBase *context, const EffectSlot *slot, const ChorusWaveform waveform, + const float delay, const float depth, const float feedback, const float rate, + int phase, const EffectTarget target); + + void deviceUpdate(const DeviceBase *device, const BufferStorage*) override + { deviceUpdate(device, ChorusMaxDelay); } + void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props_, + const EffectTarget target) override + { + auto &props = std::get<ChorusProps>(*props_); + update(context, slot, props.Waveform, props.Delay, props.Depth, props.Feedback, props.Rate, + props.Phase, target); + } void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, - const al::span<FloatBufferLine> samplesOut) override; + const al::span<FloatBufferLine> samplesOut) final; +}; - DEF_NEWDEL(ChorusState) +struct FlangerState final : public ChorusState { + void deviceUpdate(const DeviceBase *device, const BufferStorage*) final + { ChorusState::deviceUpdate(device, FlangerMaxDelay); } + void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props_, + const EffectTarget target) final + { + auto &props = std::get<FlangerProps>(*props_); + ChorusState::update(context, slot, props.Waveform, props.Delay, props.Depth, + props.Feedback, props.Rate, props.Phase, target); + } }; -void ChorusState::deviceUpdate(const DeviceBase *Device, const BufferStorage*) -{ - constexpr float max_delay{maxf(ChorusMaxDelay, FlangerMaxDelay)}; +void ChorusState::deviceUpdate(const DeviceBase *Device, const float MaxDelay) +{ const auto frequency = static_cast<float>(Device->Frequency); - const size_t maxlen{NextPowerOf2(float2uint(max_delay*2.0f*frequency) + 1u)}; + const size_t maxlen{NextPowerOf2(float2uint(MaxDelay*2.0f*frequency) + 1u)}; if(maxlen != mDelayBuffer.size()) decltype(mDelayBuffer)(maxlen).swap(mDelayBuffer); std::fill(mDelayBuffer.begin(), mDelayBuffer.end(), 0.0f); for(auto &e : mGains) { - std::fill(std::begin(e.Current), std::end(e.Current), 0.0f); - std::fill(std::begin(e.Target), std::end(e.Target), 0.0f); + e.Current.fill(0.0f); + e.Target.fill(0.0f); } } -void ChorusState::update(const ContextBase *Context, const EffectSlot *Slot, - const EffectProps *props, const EffectTarget target) +void ChorusState::update(const ContextBase *context, const EffectSlot *slot, + const ChorusWaveform waveform, const float delay, const float depth, const float feedback, + const float rate, int phase, const EffectTarget target) { - constexpr int mindelay{(MaxResamplerPadding>>1) << MixerFracBits}; + static constexpr int mindelay{(MaxResamplerPadding>>1) << MixerFracBits}; /* The LFO depth is scaled to be relative to the sample delay. Clamp the * delay and depth to allow enough padding for resampling. */ - const DeviceBase *device{Context->mDevice}; + const DeviceBase *device{context->mDevice}; const auto frequency = static_cast<float>(device->Frequency); - mWaveform = props->Chorus.Waveform; + mWaveform = waveform; - mDelay = maxi(float2int(props->Chorus.Delay*frequency*MixerFracOne + 0.5f), mindelay); - mDepth = minf(props->Chorus.Depth * static_cast<float>(mDelay), + mDelay = maxi(float2int(delay*frequency*MixerFracOne + 0.5f), mindelay); + mDepth = minf(depth * static_cast<float>(mDelay), static_cast<float>(mDelay - mindelay)); - mFeedback = props->Chorus.Feedback; + mFeedback = feedback; /* Gains for left and right sides */ - static constexpr auto inv_sqrt2 = static_cast<float>(1.0 / al::numbers::sqrt2); - static constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f}); - static constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f}); - static constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2}); - static constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2}); - auto &lcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? lcoeffs_nrml : lcoeffs_pw; - auto &rcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? rcoeffs_nrml : rcoeffs_pw; + const bool ispairwise{device->mRenderMode == RenderMode::Pairwise}; + const auto lcoeffs = (!ispairwise) ? al::span{lcoeffs_nrml} : al::span{lcoeffs_pw}; + const auto rcoeffs = (!ispairwise) ? al::span{rcoeffs_nrml} : al::span{rcoeffs_pw}; mOutTarget = target.Main->Buffer; - ComputePanGains(target.Main, lcoeffs, Slot->Gain, mGains[0].Target); - ComputePanGains(target.Main, rcoeffs, Slot->Gain, mGains[1].Target); + ComputePanGains(target.Main, lcoeffs, slot->Gain, mGains[0].Target); + ComputePanGains(target.Main, rcoeffs, slot->Gain, mGains[1].Target); - float rate{props->Chorus.Rate}; if(!(rate > 0.0f)) { mLfoOffset = 0; @@ -149,7 +173,7 @@ void ChorusState::update(const ContextBase *Context, const EffectSlot *Slot, /* Calculate LFO coefficient (number of samples per cycle). Limit the * max range to avoid overflow when calculating the displacement. */ - uint lfo_range{float2uint(minf(frequency/rate + 0.5f, float{INT_MAX/360 - 180}))}; + const uint lfo_range{float2uint(minf(frequency/rate + 0.5f, float{INT_MAX/360 - 180}))}; mLfoOffset = mLfoOffset * lfo_range / mLfoRange; mLfoRange = lfo_range; @@ -164,7 +188,6 @@ void ChorusState::update(const ContextBase *Context, const EffectSlot *Slot, } /* Calculate lfo phase displacement */ - int phase{props->Chorus.Phase}; if(phase < 0) phase = 360 + phase; mLfoDisp = (mLfoRange*static_cast<uint>(phase) + 180) / 360; } @@ -266,10 +289,10 @@ void ChorusState::process(const size_t samplesToDo, const al::span<const FloatBu else /*if(mWaveform == ChorusWaveform::Triangle)*/ calcTriangleDelays(samplesToDo); - const uint *RESTRICT ldelays{mModDelays[0]}; - const uint *RESTRICT rdelays{mModDelays[1]}; - float *RESTRICT lbuffer{al::assume_aligned<16>(mBuffer[0])}; - float *RESTRICT rbuffer{al::assume_aligned<16>(mBuffer[1])}; + const uint *RESTRICT ldelays{mModDelays[0].data()}; + const uint *RESTRICT rdelays{mModDelays[1].data()}; + float *RESTRICT lbuffer{al::assume_aligned<16>(mBuffer[0].data())}; + float *RESTRICT rbuffer{al::assume_aligned<16>(mBuffer[1].data())}; for(size_t i{0u};i < samplesToDo;++i) { // Feed the buffer's input first (necessary for delays < 1). @@ -292,10 +315,10 @@ void ChorusState::process(const size_t samplesToDo, const al::span<const FloatBu ++offset; } - MixSamples({lbuffer, samplesToDo}, samplesOut, mGains[0].Current, mGains[0].Target, - samplesToDo, 0); - MixSamples({rbuffer, samplesToDo}, samplesOut, mGains[1].Current, mGains[1].Target, - samplesToDo, 0); + MixSamples({lbuffer, samplesToDo}, samplesOut, mGains[0].Current.data(), + mGains[0].Target.data(), samplesToDo, 0); + MixSamples({rbuffer, samplesToDo}, samplesOut, mGains[1].Current.data(), + mGains[1].Target.data(), samplesToDo, 0); mOffset = offset; } @@ -312,7 +335,7 @@ struct ChorusStateFactory final : public EffectStateFactory { */ struct FlangerStateFactory final : public EffectStateFactory { al::intrusive_ptr<EffectState> create() override - { return al::intrusive_ptr<EffectState>{new ChorusState{}}; } + { return al::intrusive_ptr<EffectState>{new FlangerState{}}; } }; } // namespace diff --git a/alc/effects/compressor.cpp b/alc/effects/compressor.cpp index 0a7ed67a..717b6dd2 100644 --- a/alc/effects/compressor.cpp +++ b/alc/effects/compressor.cpp @@ -64,10 +64,11 @@ namespace { struct CompressorState final : public EffectState { /* Effect gains for each channel */ - struct { + struct TargetGain { uint mTarget{InvalidChannelIndex}; float mGain{1.0f}; - } mChans[MaxAmbiChannels]; + }; + std::array<TargetGain,MaxAmbiChannels> mChans; /* Effect parameters */ bool mEnabled{true}; @@ -81,8 +82,6 @@ struct CompressorState final : public EffectState { const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(CompressorState) }; void CompressorState::deviceUpdate(const DeviceBase *device, const BufferStorage*) @@ -103,7 +102,7 @@ void CompressorState::deviceUpdate(const DeviceBase *device, const BufferStorage void CompressorState::update(const ContextBase*, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) { - mEnabled = props->Compressor.OnOff; + mEnabled = std::get<CompressorProps>(*props).OnOff; mOutTarget = target.Main->Buffer; auto set_channel = [this](size_t idx, uint outchan, float outgain) @@ -119,8 +118,8 @@ void CompressorState::process(const size_t samplesToDo, { for(size_t base{0u};base < samplesToDo;) { - float gains[256]; - const size_t td{minz(256, samplesToDo-base)}; + std::array<float,256> gains; + const size_t td{minz(gains.size(), samplesToDo-base)}; /* Generate the per-sample gains from the signal envelope. */ float env{mEnvFollower}; diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp index 517e6b08..3f3e157c 100644 --- a/alc/effects/convolution.cpp +++ b/alc/effects/convolution.cpp @@ -5,11 +5,12 @@ #include <array> #include <complex> #include <cstddef> +#include <cstdint> #include <functional> #include <iterator> #include <memory> -#include <stdint.h> #include <utility> +#include <vector> #ifdef HAVE_SSE_INTRINSICS #include <xmmintrin.h> @@ -190,12 +191,6 @@ void apply_fir(al::span<float> dst, const float *RESTRICT src, const float *REST } -struct PFFFTSetupDeleter { - void operator()(PFFFT_Setup *ptr) { pffft_destroy_setup(ptr); } -}; -using PFFFTSetupPtr = std::unique_ptr<PFFFT_Setup,PFFFTSetupDeleter>; - - struct ConvolutionState final : public EffectState { FmtChannels mChannels{}; AmbiLayout mAmbiLayout{}; @@ -207,7 +202,7 @@ struct ConvolutionState final : public EffectState { al::vector<std::array<float,ConvolveUpdateSamples>,16> mFilter; al::vector<std::array<float,ConvolveUpdateSamples*2>,16> mOutput; - PFFFTSetupPtr mFft{}; + PFFFTSetup mFft{}; alignas(16) std::array<float,ConvolveUpdateSize> mFftBuffer{}; alignas(16) std::array<float,ConvolveUpdateSize> mFftWorkBuffer{}; @@ -218,8 +213,8 @@ struct ConvolutionState final : public EffectState { alignas(16) FloatBufferLine mBuffer{}; float mHfScale{}, mLfScale{}; BandSplitter mFilter{}; - float Current[MAX_OUTPUT_CHANNELS]{}; - float Target[MAX_OUTPUT_CHANNELS]{}; + std::array<float,MaxOutputChannels> Current{}; + std::array<float,MaxOutputChannels> Target{}; }; std::vector<ChannelData> mChans; al::vector<float,16> mComplexData; @@ -238,16 +233,14 @@ struct ConvolutionState final : public EffectState { const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(ConvolutionState) }; void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo) { for(auto &chan : mChans) - MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target, - samplesToDo, 0); + MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current.data(), + chan.Target.data(), samplesToDo, 0); } void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut, @@ -257,7 +250,7 @@ void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut, { const al::span<float> src{chan.mBuffer.data(), samplesToDo}; chan.mFilter.processScale(src, chan.mHfScale, chan.mLfScale); - MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0); + MixSamples(src, samplesOut, chan.Current.data(), chan.Target.data(), samplesToDo, 0); } } @@ -270,7 +263,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag static constexpr uint MaxConvolveAmbiOrder{1u}; if(!mFft) - mFft = PFFFTSetupPtr{pffft_new_setup(ConvolveUpdateSize, PFFFT_REAL)}; + mFft = PFFFTSetup{ConvolveUpdateSize, PFFFT_REAL}; mFifoPos = 0; mInput.fill(0.0f); @@ -331,10 +324,10 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag /* Load the samples from the buffer. */ const size_t srclinelength{RoundUp(buffer->mSampleLen+DecoderPadding, 16)}; - auto srcsamples = std::make_unique<float[]>(srclinelength * numChannels); - std::fill_n(srcsamples.get(), srclinelength * numChannels, 0.0f); + auto srcsamples = std::vector<float>(srclinelength * numChannels); + std::fill(srcsamples.begin(), srcsamples.end(), 0.0f); for(size_t c{0};c < numChannels && c < realChannels;++c) - LoadSamples(srcsamples.get() + srclinelength*c, buffer->mData.data() + bytesPerSample*c, + LoadSamples(srcsamples.data() + srclinelength*c, buffer->mData.data() + bytesPerSample*c, realChannels, buffer->mType, buffer->mSampleLen); if(IsUHJ(mChannels)) @@ -342,12 +335,11 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag auto decoder = std::make_unique<UhjDecoderType>(); std::array<float*,4> samples{}; for(size_t c{0};c < numChannels;++c) - samples[c] = srcsamples.get() + srclinelength*c; + samples[c] = srcsamples.data() + srclinelength*c; decoder->decode({samples.data(), numChannels}, buffer->mSampleLen, buffer->mSampleLen); } - auto ressamples = std::make_unique<double[]>(buffer->mSampleLen + - (resampler ? resampledCount : 0)); + auto ressamples = std::vector<double>(buffer->mSampleLen + (resampler ? resampledCount : 0)); auto ffttmp = al::vector<float,16>(ConvolveUpdateSize); auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize); @@ -357,19 +349,20 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag /* Resample to match the device. */ if(resampler) { - std::copy_n(srcsamples.get() + srclinelength*c, buffer->mSampleLen, - ressamples.get() + resampledCount); - resampler.process(buffer->mSampleLen, ressamples.get()+resampledCount, - resampledCount, ressamples.get()); + std::copy_n(srcsamples.data() + srclinelength*c, buffer->mSampleLen, + ressamples.data() + resampledCount); + resampler.process(buffer->mSampleLen, ressamples.data()+resampledCount, + resampledCount, ressamples.data()); } else - std::copy_n(srcsamples.get() + srclinelength*c, buffer->mSampleLen, ressamples.get()); + std::copy_n(srcsamples.data() + srclinelength*c, buffer->mSampleLen, + ressamples.data()); /* Store the first segment's samples in reverse in the time-domain, to * apply as a FIR filter. */ const size_t first_size{minz(resampledCount, ConvolveUpdateSamples)}; - std::transform(ressamples.get(), ressamples.get()+first_size, mFilter[c].rbegin(), + std::transform(ressamples.data(), ressamples.data()+first_size, mFilter[c].rbegin(), [](const double d) noexcept -> float { return static_cast<float>(d); }); size_t done{first_size}; @@ -400,7 +393,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag /* Reorder backward to make it suitable for pffft_zconvolve and the * subsequent pffft_transform(..., PFFFT_BACKWARD). */ - pffft_zreorder(mFft.get(), ffttmp.data(), al::to_address(filteriter), PFFFT_BACKWARD); + mFft.zreorder(ffttmp.data(), al::to_address(filteriter), PFFFT_BACKWARD); filteriter += ConvolveUpdateSize; } } @@ -408,54 +401,61 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot, - const EffectProps *props, const EffectTarget target) + const EffectProps *props_, const EffectTarget target) { /* TODO: LFE is not mixed to output. This will require each buffer channel * to have its own output target since the main mixing buffer won't have an * LFE channel (due to being B-Format). */ - static constexpr ChanPosMap MonoMap[1]{ - { FrontCenter, std::array{0.0f, 0.0f, -1.0f} } - }, StereoMap[2]{ - { FrontLeft, std::array{-sin30, 0.0f, -cos30} }, - { FrontRight, std::array{ sin30, 0.0f, -cos30} }, - }, RearMap[2]{ - { BackLeft, std::array{-sin30, 0.0f, cos30} }, - { BackRight, std::array{ sin30, 0.0f, cos30} }, - }, QuadMap[4]{ - { FrontLeft, std::array{-sin45, 0.0f, -cos45} }, - { FrontRight, std::array{ sin45, 0.0f, -cos45} }, - { BackLeft, std::array{-sin45, 0.0f, cos45} }, - { BackRight, std::array{ sin45, 0.0f, cos45} }, - }, X51Map[6]{ - { FrontLeft, std::array{-sin30, 0.0f, -cos30} }, - { FrontRight, std::array{ sin30, 0.0f, -cos30} }, - { FrontCenter, std::array{ 0.0f, 0.0f, -1.0f} }, - { LFE, {} }, - { SideLeft, std::array{-sin110, 0.0f, -cos110} }, - { SideRight, std::array{ sin110, 0.0f, -cos110} }, - }, X61Map[7]{ - { FrontLeft, std::array{-sin30, 0.0f, -cos30} }, - { FrontRight, std::array{ sin30, 0.0f, -cos30} }, - { FrontCenter, std::array{ 0.0f, 0.0f, -1.0f} }, - { LFE, {} }, - { BackCenter, std::array{ 0.0f, 0.0f, 1.0f} }, - { SideLeft, std::array{-1.0f, 0.0f, 0.0f} }, - { SideRight, std::array{ 1.0f, 0.0f, 0.0f} }, - }, X71Map[8]{ - { FrontLeft, std::array{-sin30, 0.0f, -cos30} }, - { FrontRight, std::array{ sin30, 0.0f, -cos30} }, - { FrontCenter, std::array{ 0.0f, 0.0f, -1.0f} }, - { LFE, {} }, - { BackLeft, std::array{-sin30, 0.0f, cos30} }, - { BackRight, std::array{ sin30, 0.0f, cos30} }, - { SideLeft, std::array{ -1.0f, 0.0f, 0.0f} }, - { SideRight, std::array{ 1.0f, 0.0f, 0.0f} }, + static constexpr std::array MonoMap{ + ChanPosMap{FrontCenter, std::array{0.0f, 0.0f, -1.0f}} + }; + static constexpr std::array StereoMap{ + ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}}, + ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}}, + }; + static constexpr std::array RearMap{ + ChanPosMap{BackLeft, std::array{-sin30, 0.0f, cos30}}, + ChanPosMap{BackRight, std::array{ sin30, 0.0f, cos30}}, + }; + static constexpr std::array QuadMap{ + ChanPosMap{FrontLeft, std::array{-sin45, 0.0f, -cos45}}, + ChanPosMap{FrontRight, std::array{ sin45, 0.0f, -cos45}}, + ChanPosMap{BackLeft, std::array{-sin45, 0.0f, cos45}}, + ChanPosMap{BackRight, std::array{ sin45, 0.0f, cos45}}, + }; + static constexpr std::array X51Map{ + ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}}, + ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}}, + ChanPosMap{FrontCenter, std::array{ 0.0f, 0.0f, -1.0f}}, + ChanPosMap{LFE, {}}, + ChanPosMap{SideLeft, std::array{-sin110, 0.0f, -cos110}}, + ChanPosMap{SideRight, std::array{ sin110, 0.0f, -cos110}}, + }; + static constexpr std::array X61Map{ + ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}}, + ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}}, + ChanPosMap{FrontCenter, std::array{ 0.0f, 0.0f, -1.0f}}, + ChanPosMap{LFE, {}}, + ChanPosMap{BackCenter, std::array{ 0.0f, 0.0f, 1.0f} }, + ChanPosMap{SideLeft, std::array{-1.0f, 0.0f, 0.0f} }, + ChanPosMap{SideRight, std::array{ 1.0f, 0.0f, 0.0f} }, + }; + static constexpr std::array X71Map{ + ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}}, + ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}}, + ChanPosMap{FrontCenter, std::array{ 0.0f, 0.0f, -1.0f}}, + ChanPosMap{LFE, {}}, + ChanPosMap{BackLeft, std::array{-sin30, 0.0f, cos30}}, + ChanPosMap{BackRight, std::array{ sin30, 0.0f, cos30}}, + ChanPosMap{SideLeft, std::array{ -1.0f, 0.0f, 0.0f}}, + ChanPosMap{SideRight, std::array{ 1.0f, 0.0f, 0.0f}}, }; if(mNumConvolveSegs < 1) UNLIKELY return; + auto &props = std::get<ConvolutionProps>(*props_); mMix = &ConvolutionState::NormalMix; for(auto &chan : mChans) @@ -489,21 +489,19 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot } mOutTarget = target.Main->Buffer; - alu::Vector N{props->Convolution.OrientAt[0], props->Convolution.OrientAt[1], - props->Convolution.OrientAt[2], 0.0f}; + alu::Vector N{props.OrientAt[0], props.OrientAt[1], props.OrientAt[2], 0.0f}; N.normalize(); - alu::Vector V{props->Convolution.OrientUp[0], props->Convolution.OrientUp[1], - props->Convolution.OrientUp[2], 0.0f}; + alu::Vector V{props.OrientUp[0], props.OrientUp[1], props.OrientUp[2], 0.0f}; V.normalize(); /* Build and normalize right-vector */ alu::Vector U{N.cross_product(V)}; U.normalize(); - const float mixmatrix[4][4]{ - {1.0f, 0.0f, 0.0f, 0.0f}, - {0.0f, U[0], -U[1], U[2]}, - {0.0f, -V[0], V[1], -V[2]}, - {0.0f, -N[0], N[1], -N[2]}, + const std::array mixmatrix{ + std::array{1.0f, 0.0f, 0.0f, 0.0f}, + std::array{0.0f, U[0], -U[1], U[2]}, + std::array{0.0f, -V[0], V[1], -V[2]}, + std::array{0.0f, -N[0], N[1], -N[2]}, }; const auto scales = GetAmbiScales(mAmbiScaling); @@ -642,7 +640,7 @@ void ConvolutionState::process(const size_t samplesToDo, /* Calculate the frequency-domain response and add the relevant * frequency bins to the FFT history. */ - pffft_transform(mFft.get(), mInput.data(), mComplexData.data() + curseg*ConvolveUpdateSize, + mFft.transform(mInput.data(), mComplexData.data() + curseg*ConvolveUpdateSize, mFftWorkBuffer.data(), PFFFT_FORWARD); const float *filter{mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize}; @@ -655,14 +653,14 @@ void ConvolutionState::process(const size_t samplesToDo, const float *input{&mComplexData[curseg*ConvolveUpdateSize]}; for(size_t s{curseg};s < mNumConvolveSegs;++s) { - pffft_zconvolve_accumulate(mFft.get(), input, filter, mFftBuffer.data()); + mFft.zconvolve_accumulate(input, filter, mFftBuffer.data()); input += ConvolveUpdateSize; filter += ConvolveUpdateSize; } input = mComplexData.data(); for(size_t s{0};s < curseg;++s) { - pffft_zconvolve_accumulate(mFft.get(), input, filter, mFftBuffer.data()); + mFft.zconvolve_accumulate(input, filter, mFftBuffer.data()); input += ConvolveUpdateSize; filter += ConvolveUpdateSize; } @@ -672,8 +670,8 @@ void ConvolutionState::process(const size_t samplesToDo, * second-half samples (and this output's second half is * subsequently saved for next time). */ - pffft_transform(mFft.get(), mFftBuffer.data(), mFftBuffer.data(), - mFftWorkBuffer.data(), PFFFT_BACKWARD); + mFft.transform(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(), + PFFFT_BACKWARD); /* The filter was attenuated, so the response is already scaled. */ for(size_t i{0};i < ConvolveUpdateSamples;++i) diff --git a/alc/effects/dedicated.cpp b/alc/effects/dedicated.cpp index a9131bfa..23ac4d1a 100644 --- a/alc/effects/dedicated.cpp +++ b/alc/effects/dedicated.cpp @@ -42,82 +42,100 @@ namespace { using uint = unsigned int; -struct DedicatedState final : public EffectState { +struct DedicatedState : public EffectState { /* The "dedicated" effect can output to the real output, so should have * gains for all possible output channels and not just the main ambisonic * buffer. */ - float mCurrentGains[MAX_OUTPUT_CHANNELS]; - float mTargetGains[MAX_OUTPUT_CHANNELS]; + std::array<float,MaxOutputChannels> mCurrentGains{}; + std::array<float,MaxOutputChannels> mTargetGains{}; - void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; + void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) final; void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, - const al::span<FloatBufferLine> samplesOut) override; + const al::span<FloatBufferLine> samplesOut) final; +}; - DEF_NEWDEL(DedicatedState) +struct DedicatedLfeState final : public DedicatedState { + void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, + const EffectTarget target) final; }; void DedicatedState::deviceUpdate(const DeviceBase*, const BufferStorage*) { - std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f); + std::fill(mCurrentGains.begin(), mCurrentGains.end(), 0.0f); } void DedicatedState::update(const ContextBase*, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) { - std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f); + std::fill(mTargetGains.begin(), mTargetGains.end(), 0.0f); - const float Gain{slot->Gain * props->Dedicated.Gain}; + const float Gain{slot->Gain * std::get<DedicatedDialogProps>(*props).Gain}; - if(slot->EffectType == EffectSlotType::DedicatedLFE) + /* Dialog goes to the front-center speaker if it exists, otherwise it plays + * from the front-center location. + */ + const size_t idx{target.RealOut ? target.RealOut->ChannelIndex[FrontCenter] + : InvalidChannelIndex}; + if(idx != InvalidChannelIndex) { - const size_t idx{target.RealOut ? target.RealOut->ChannelIndex[LFE] : InvalidChannelIndex}; - if(idx != InvalidChannelIndex) - { - mOutTarget = target.RealOut->Buffer; - mTargetGains[idx] = Gain; - } + mOutTarget = target.RealOut->Buffer; + mTargetGains[idx] = Gain; } - else if(slot->EffectType == EffectSlotType::DedicatedDialog) + else { - /* Dialog goes to the front-center speaker if it exists, otherwise it - * plays from the front-center location. */ - const size_t idx{target.RealOut ? target.RealOut->ChannelIndex[FrontCenter] - : InvalidChannelIndex}; - if(idx != InvalidChannelIndex) - { - mOutTarget = target.RealOut->Buffer; - mTargetGains[idx] = Gain; - } - else - { - static constexpr auto coeffs = CalcDirectionCoeffs(std::array{0.0f, 0.0f, -1.0f}); - - mOutTarget = target.Main->Buffer; - ComputePanGains(target.Main, coeffs, Gain, mTargetGains); - } + static constexpr auto coeffs = CalcDirectionCoeffs(std::array{0.0f, 0.0f, -1.0f}); + + mOutTarget = target.Main->Buffer; + ComputePanGains(target.Main, coeffs, Gain, mTargetGains); + } +} + +void DedicatedLfeState::update(const ContextBase*, const EffectSlot *slot, + const EffectProps *props, const EffectTarget target) +{ + std::fill(mTargetGains.begin(), mTargetGains.end(), 0.0f); + + const float Gain{slot->Gain * std::get<DedicatedLfeProps>(*props).Gain}; + + const size_t idx{target.RealOut ? target.RealOut->ChannelIndex[LFE] : InvalidChannelIndex}; + if(idx != InvalidChannelIndex) + { + mOutTarget = target.RealOut->Buffer; + mTargetGains[idx] = Gain; } } void DedicatedState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) { - MixSamples({samplesIn[0].data(), samplesToDo}, samplesOut, mCurrentGains, mTargetGains, - samplesToDo, 0); + MixSamples({samplesIn[0].data(), samplesToDo}, samplesOut, mCurrentGains.data(), + mTargetGains.data(), samplesToDo, 0); } -struct DedicatedStateFactory final : public EffectStateFactory { +struct DedicatedDialogStateFactory final : public EffectStateFactory { al::intrusive_ptr<EffectState> create() override { return al::intrusive_ptr<EffectState>{new DedicatedState{}}; } }; +struct DedicatedLfeStateFactory final : public EffectStateFactory { + al::intrusive_ptr<EffectState> create() override + { return al::intrusive_ptr<EffectState>{new DedicatedLfeState{}}; } +}; + } // namespace -EffectStateFactory *DedicatedStateFactory_getFactory() +EffectStateFactory *DedicatedDialogStateFactory_getFactory() +{ + static DedicatedDialogStateFactory DedicatedFactory{}; + return &DedicatedFactory; +} + +EffectStateFactory *DedicatedLfeStateFactory_getFactory() { - static DedicatedStateFactory DedicatedFactory{}; + static DedicatedLfeStateFactory DedicatedFactory{}; return &DedicatedFactory; } diff --git a/alc/effects/distortion.cpp b/alc/effects/distortion.cpp index 3d77ff35..d0946971 100644 --- a/alc/effects/distortion.cpp +++ b/alc/effects/distortion.cpp @@ -45,7 +45,7 @@ namespace { struct DistortionState final : public EffectState { /* Effect gains for each channel */ - float mGain[MaxAmbiChannels]{}; + std::array<float,MaxAmbiChannels> mGain{}; /* Effect parameters */ BiquadFilter mLowpass; @@ -53,7 +53,7 @@ struct DistortionState final : public EffectState { float mAttenuation{}; float mEdgeCoeff{}; - alignas(16) float mBuffer[2][BufferLineSize]{}; + alignas(16) std::array<FloatBufferLine,2> mBuffer{}; void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; @@ -61,8 +61,6 @@ struct DistortionState final : public EffectState { const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(DistortionState) }; void DistortionState::deviceUpdate(const DeviceBase*, const BufferStorage*) @@ -72,16 +70,17 @@ void DistortionState::deviceUpdate(const DeviceBase*, const BufferStorage*) } void DistortionState::update(const ContextBase *context, const EffectSlot *slot, - const EffectProps *props, const EffectTarget target) + const EffectProps *props_, const EffectTarget target) { + auto &props = std::get<DistortionProps>(*props_); const DeviceBase *device{context->mDevice}; /* Store waveshaper edge settings. */ - const float edge{minf(std::sin(al::numbers::pi_v<float>*0.5f * props->Distortion.Edge), + const float edge{minf(std::sin(al::numbers::pi_v<float>*0.5f * props.Edge), 0.99f)}; mEdgeCoeff = 2.0f * edge / (1.0f-edge); - float cutoff{props->Distortion.LowpassCutoff}; + float cutoff{props.LowpassCutoff}; /* Bandwidth value is constant in octaves. */ float bandwidth{(cutoff / 2.0f) / (cutoff * 0.67f)}; /* Divide normalized frequency by the amount of oversampling done during @@ -90,15 +89,15 @@ void DistortionState::update(const ContextBase *context, const EffectSlot *slot, auto frequency = static_cast<float>(device->Frequency); mLowpass.setParamsFromBandwidth(BiquadType::LowPass, cutoff/frequency/4.0f, 1.0f, bandwidth); - cutoff = props->Distortion.EQCenter; + cutoff = props.EQCenter; /* Convert bandwidth in Hz to octaves. */ - bandwidth = props->Distortion.EQBandwidth / (cutoff * 0.67f); + bandwidth = props.EQBandwidth / (cutoff * 0.67f); mBandpass.setParamsFromBandwidth(BiquadType::BandPass, cutoff/frequency/4.0f, 1.0f, bandwidth); static constexpr auto coeffs = CalcDirectionCoeffs(std::array{0.0f, 0.0f, -1.0f}); mOutTarget = target.Main->Buffer; - ComputePanGains(target.Main, coeffs, slot->Gain*props->Distortion.Gain, mGain); + ComputePanGains(target.Main, coeffs, slot->Gain*props.Gain, mGain); } void DistortionState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) @@ -124,7 +123,7 @@ void DistortionState::process(const size_t samplesToDo, const al::span<const Flo * (which is fortunately first step of distortion). So combine three * operations into the one. */ - mLowpass.process({mBuffer[0], todo}, mBuffer[1]); + mLowpass.process({mBuffer[0].data(), todo}, mBuffer[1].data()); /* Second step, do distortion using waveshaper function to emulate * signal processing during tube overdriving. Three steps of @@ -138,15 +137,15 @@ void DistortionState::process(const size_t samplesToDo, const al::span<const Flo smp = (1.0f + fc) * smp/(1.0f + fc*std::abs(smp)); return smp; }; - std::transform(std::begin(mBuffer[1]), std::begin(mBuffer[1])+todo, std::begin(mBuffer[0]), + std::transform(mBuffer[1].begin(), mBuffer[1].begin()+todo, mBuffer[0].begin(), proc_sample); /* Third step, do bandpass filtering of distorted signal. */ - mBandpass.process({mBuffer[0], todo}, mBuffer[1]); + mBandpass.process({mBuffer[0].data(), todo}, mBuffer[1].data()); todo >>= 2; - const float *outgains{mGain}; - for(FloatBufferLine &output : samplesOut) + const float *outgains{mGain.data()}; + for(FloatBufferLine &RESTRICT output : samplesOut) { /* Fourth step, final, do attenuation and perform decimation, * storing only one sample out of four. diff --git a/alc/effects/echo.cpp b/alc/effects/echo.cpp index 714649c9..a5bfa6a5 100644 --- a/alc/effects/echo.cpp +++ b/alc/effects/echo.cpp @@ -53,29 +53,26 @@ struct EchoState final : public EffectState { // The echo is two tap. The delay is the number of samples from before the // current offset - struct { - size_t delay{0u}; - } mTap[2]; + std::array<size_t,2> mDelayTap{}; size_t mOffset{0u}; /* The panning gains for the two taps */ - struct { - float Current[MaxAmbiChannels]{}; - float Target[MaxAmbiChannels]{}; - } mGains[2]; + struct OutGains { + std::array<float,MaxAmbiChannels> Current{}; + std::array<float,MaxAmbiChannels> Target{}; + }; + std::array<OutGains,2> mGains; BiquadFilter mFilter; float mFeedGain{0.0f}; - alignas(16) float mTempBuffer[2][BufferLineSize]; + alignas(16) std::array<FloatBufferLine,2> mTempBuffer{}; void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(EchoState) }; void EchoState::deviceUpdate(const DeviceBase *Device, const BufferStorage*) @@ -92,27 +89,28 @@ void EchoState::deviceUpdate(const DeviceBase *Device, const BufferStorage*) std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f); for(auto &e : mGains) { - std::fill(std::begin(e.Current), std::end(e.Current), 0.0f); - std::fill(std::begin(e.Target), std::end(e.Target), 0.0f); + std::fill(e.Current.begin(), e.Current.end(), 0.0f); + std::fill(e.Target.begin(), e.Target.end(), 0.0f); } } void EchoState::update(const ContextBase *context, const EffectSlot *slot, - const EffectProps *props, const EffectTarget target) + const EffectProps *props_, const EffectTarget target) { + auto &props = std::get<EchoProps>(*props_); const DeviceBase *device{context->mDevice}; const auto frequency = static_cast<float>(device->Frequency); - mTap[0].delay = maxu(float2uint(props->Echo.Delay*frequency + 0.5f), 1); - mTap[1].delay = float2uint(props->Echo.LRDelay*frequency + 0.5f) + mTap[0].delay; + mDelayTap[0] = maxu(float2uint(props.Delay*frequency + 0.5f), 1); + mDelayTap[1] = float2uint(props.LRDelay*frequency + 0.5f) + mDelayTap[0]; - const float gainhf{maxf(1.0f - props->Echo.Damping, 0.0625f)}; /* Limit -24dB */ + const float gainhf{maxf(1.0f - props.Damping, 0.0625f)}; /* Limit -24dB */ mFilter.setParamsFromSlope(BiquadType::HighShelf, LowpassFreqRef/frequency, gainhf, 1.0f); - mFeedGain = props->Echo.Feedback; + mFeedGain = props.Feedback; /* Convert echo spread (where 0 = center, +/-1 = sides) to angle. */ - const float angle{std::asin(props->Echo.Spread)}; + const float angle{std::asin(props.Spread)}; const auto coeffs0 = CalcAngleCoeffs(-angle, 0.0f, 0.0f); const auto coeffs1 = CalcAngleCoeffs( angle, 0.0f, 0.0f); @@ -127,14 +125,13 @@ void EchoState::process(const size_t samplesToDo, const al::span<const FloatBuff const size_t mask{mSampleBuffer.size()-1}; float *RESTRICT delaybuf{mSampleBuffer.data()}; size_t offset{mOffset}; - size_t tap1{offset - mTap[0].delay}; - size_t tap2{offset - mTap[1].delay}; - float z1, z2; + size_t tap1{offset - mDelayTap[0]}; + size_t tap2{offset - mDelayTap[1]}; ASSUME(samplesToDo > 0); const BiquadFilter filter{mFilter}; - std::tie(z1, z2) = mFilter.getComponents(); + auto [z1, z2] = mFilter.getComponents(); for(size_t i{0u};i < samplesToDo;) { offset &= mask; @@ -161,8 +158,8 @@ void EchoState::process(const size_t samplesToDo, const al::span<const FloatBuff mOffset = offset; for(size_t c{0};c < 2;c++) - MixSamples({mTempBuffer[c], samplesToDo}, samplesOut, mGains[c].Current, mGains[c].Target, - samplesToDo, 0); + MixSamples({mTempBuffer[c].data(), samplesToDo}, samplesOut, mGains[c].Current.data(), + mGains[c].Target.data(), samplesToDo, 0); } diff --git a/alc/effects/equalizer.cpp b/alc/effects/equalizer.cpp index 50bec4ad..165d00f2 100644 --- a/alc/effects/equalizer.cpp +++ b/alc/effects/equalizer.cpp @@ -86,16 +86,17 @@ namespace { struct EqualizerState final : public EffectState { - struct { + struct OutParams { uint mTargetChannel{InvalidChannelIndex}; /* Effect parameters */ - BiquadFilter mFilter[4]; + std::array<BiquadFilter,4> mFilter; /* Effect gains for each channel */ float mCurrentGain{}; float mTargetGain{}; - } mChans[MaxAmbiChannels]; + }; + std::array<OutParams,MaxAmbiChannels> mChans; alignas(16) FloatBufferLine mSampleBuffer{}; @@ -105,8 +106,6 @@ struct EqualizerState final : public EffectState { const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(EqualizerState) }; void EqualizerState::deviceUpdate(const DeviceBase*, const BufferStorage*) @@ -114,18 +113,17 @@ void EqualizerState::deviceUpdate(const DeviceBase*, const BufferStorage*) for(auto &e : mChans) { e.mTargetChannel = InvalidChannelIndex; - std::for_each(std::begin(e.mFilter), std::end(e.mFilter), - std::mem_fn(&BiquadFilter::clear)); + std::for_each(e.mFilter.begin(), e.mFilter.end(), std::mem_fn(&BiquadFilter::clear)); e.mCurrentGain = 0.0f; } } void EqualizerState::update(const ContextBase *context, const EffectSlot *slot, - const EffectProps *props, const EffectTarget target) + const EffectProps *props_, const EffectTarget target) { + auto &props = std::get<EqualizerProps>(*props_); const DeviceBase *device{context->mDevice}; auto frequency = static_cast<float>(device->Frequency); - float gain, f0norm; /* Calculate coefficients for the each type of filter. Note that the shelf * and peaking filters' gain is for the centerpoint of the transition band, @@ -133,22 +131,22 @@ void EqualizerState::update(const ContextBase *context, const EffectSlot *slot, * property gains need their dB halved (sqrt of linear gain) for the * shelf/peak to reach the provided gain. */ - gain = std::sqrt(props->Equalizer.LowGain); - f0norm = props->Equalizer.LowCutoff / frequency; + float gain{std::sqrt(props.LowGain)}; + float f0norm{props.LowCutoff / frequency}; mChans[0].mFilter[0].setParamsFromSlope(BiquadType::LowShelf, f0norm, gain, 0.75f); - gain = std::sqrt(props->Equalizer.Mid1Gain); - f0norm = props->Equalizer.Mid1Center / frequency; + gain = std::sqrt(props.Mid1Gain); + f0norm = props.Mid1Center / frequency; mChans[0].mFilter[1].setParamsFromBandwidth(BiquadType::Peaking, f0norm, gain, - props->Equalizer.Mid1Width); + props.Mid1Width); - gain = std::sqrt(props->Equalizer.Mid2Gain); - f0norm = props->Equalizer.Mid2Center / frequency; + gain = std::sqrt(props.Mid2Gain); + f0norm = props.Mid2Center / frequency; mChans[0].mFilter[2].setParamsFromBandwidth(BiquadType::Peaking, f0norm, gain, - props->Equalizer.Mid2Width); + props.Mid2Width); - gain = std::sqrt(props->Equalizer.HighGain); - f0norm = props->Equalizer.HighCutoff / frequency; + gain = std::sqrt(props.HighGain); + f0norm = props.HighCutoff / frequency; mChans[0].mFilter[3].setParamsFromSlope(BiquadType::HighShelf, f0norm, gain, 0.75f); /* Copy the filter coefficients for the other input channels. */ diff --git a/alc/effects/fshifter.cpp b/alc/effects/fshifter.cpp index d3989e84..076661cf 100644 --- a/alc/effects/fshifter.cpp +++ b/alc/effects/fshifter.cpp @@ -57,7 +57,7 @@ constexpr size_t HilStep{HilSize / OversampleFactor}; /* Define a Hann window, used to filter the HIL input and output. */ struct Windower { - alignas(16) std::array<double,HilSize> mData; + alignas(16) std::array<double,HilSize> mData{}; Windower() { @@ -91,10 +91,11 @@ struct FshifterState final : public EffectState { alignas(16) FloatBufferLine mBufferOut{}; /* Effect gains for each output channel */ - struct { - float Current[MaxAmbiChannels]{}; - float Target[MaxAmbiChannels]{}; - } mGains[2]; + struct OutGains { + std::array<float,MaxAmbiChannels> Current{}; + std::array<float,MaxAmbiChannels> Target{}; + }; + std::array<OutGains,2> mGains; void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; @@ -102,8 +103,6 @@ struct FshifterState final : public EffectState { const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(FshifterState) }; void FshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*) @@ -122,20 +121,21 @@ void FshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*) for(auto &gain : mGains) { - std::fill(std::begin(gain.Current), std::end(gain.Current), 0.0f); - std::fill(std::begin(gain.Target), std::end(gain.Target), 0.0f); + gain.Current.fill(0.0f); + gain.Target.fill(0.0f); } } void FshifterState::update(const ContextBase *context, const EffectSlot *slot, - const EffectProps *props, const EffectTarget target) + const EffectProps *props_, const EffectTarget target) { + auto &props = std::get<FshifterProps>(*props_); const DeviceBase *device{context->mDevice}; - const float step{props->Fshifter.Frequency / static_cast<float>(device->Frequency)}; + const float step{props.Frequency / static_cast<float>(device->Frequency)}; mPhaseStep[0] = mPhaseStep[1] = fastf2u(minf(step, 1.0f) * MixerFracOne); - switch(props->Fshifter.LeftDirection) + switch(props.LeftDirection) { case FShifterDirection::Down: mSign[0] = -1.0; @@ -149,7 +149,7 @@ void FshifterState::update(const ContextBase *context, const EffectSlot *slot, break; } - switch(props->Fshifter.RightDirection) + switch(props.RightDirection) { case FShifterDirection::Down: mSign[1] = -1.0; @@ -235,8 +235,8 @@ void FshifterState::process(const size_t samplesToDo, const al::span<const Float mPhase[c] = phase_idx; /* Now, mix the processed sound data to the output. */ - MixSamples({BufferOut, samplesToDo}, samplesOut, mGains[c].Current, mGains[c].Target, - maxz(samplesToDo, 512), 0); + MixSamples({BufferOut, samplesToDo}, samplesOut, mGains[c].Current.data(), + mGains[c].Target.data(), maxz(samplesToDo, 512), 0); } } diff --git a/alc/effects/modulator.cpp b/alc/effects/modulator.cpp index f99ba19c..7350ca5a 100644 --- a/alc/effects/modulator.cpp +++ b/alc/effects/modulator.cpp @@ -52,7 +52,7 @@ inline float Saw(uint index, float scale) { return static_cast<float>(index)*scale - 1.0f; } inline float Square(uint index, float scale) -{ return (static_cast<float>(index)*scale < 0.5f)*2.0f - 1.0f; } +{ return float(static_cast<float>(index)*scale < 0.5f)*2.0f - 1.0f; } inline float One(uint, float) { return 1.0f; } @@ -89,14 +89,15 @@ struct ModulatorState final : public EffectState { alignas(16) FloatBufferLine mModSamples{}; alignas(16) FloatBufferLine mBuffer{}; - struct { + struct OutParams { uint mTargetChannel{InvalidChannelIndex}; BiquadFilter mFilter; float mCurrentGain{}; float mTargetGain{}; - } mChans[MaxAmbiChannels]; + }; + std::array<OutParams,MaxAmbiChannels> mChans; void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; @@ -104,8 +105,6 @@ struct ModulatorState final : public EffectState { const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(ModulatorState) }; template<> @@ -126,8 +125,9 @@ void ModulatorState::deviceUpdate(const DeviceBase*, const BufferStorage*) } void ModulatorState::update(const ContextBase *context, const EffectSlot *slot, - const EffectProps *props, const EffectTarget target) + const EffectProps *props_, const EffectTarget target) { + auto &props = std::get<ModulatorProps>(*props_); const DeviceBase *device{context->mDevice}; /* The effective frequency will be adjusted to have a whole number of @@ -137,8 +137,8 @@ void ModulatorState::update(const ContextBase *context, const EffectSlot *slot, * but that may need a more efficient sin function since it needs to do * many iterations per sample. */ - const float samplesPerCycle{props->Modulator.Frequency > 0.0f - ? static_cast<float>(device->Frequency)/props->Modulator.Frequency + 0.5f + const float samplesPerCycle{props.Frequency > 0.0f + ? static_cast<float>(device->Frequency)/props.Frequency + 0.5f : 1.0f}; const uint range{static_cast<uint>(clampf(samplesPerCycle, 1.0f, static_cast<float>(device->Frequency)))}; @@ -150,17 +150,17 @@ void ModulatorState::update(const ContextBase *context, const EffectSlot *slot, mIndexScale = 0.0f; mGenModSamples = &ModulatorState::Modulate<One>; } - else if(props->Modulator.Waveform == ModulatorWaveform::Sinusoid) + else if(props.Waveform == ModulatorWaveform::Sinusoid) { mIndexScale = al::numbers::pi_v<float>*2.0f / static_cast<float>(mRange); mGenModSamples = &ModulatorState::Modulate<Sin>; } - else if(props->Modulator.Waveform == ModulatorWaveform::Sawtooth) + else if(props.Waveform == ModulatorWaveform::Sawtooth) { mIndexScale = 2.0f / static_cast<float>(mRange-1); mGenModSamples = &ModulatorState::Modulate<Saw>; } - else /*if(props->Modulator.Waveform == ModulatorWaveform::Square)*/ + else /*if(props.Waveform == ModulatorWaveform::Square)*/ { /* For square wave, the range should be even (there should be an equal * number of high and low samples). An odd number of samples per cycle @@ -171,7 +171,7 @@ void ModulatorState::update(const ContextBase *context, const EffectSlot *slot, mGenModSamples = &ModulatorState::Modulate<Square>; } - float f0norm{props->Modulator.HighPassCutoff / static_cast<float>(device->Frequency)}; + float f0norm{props.HighPassCutoff / static_cast<float>(device->Frequency)}; f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f); /* Bandwidth value is constant in octaves. */ mChans[0].mFilter.setParamsFromBandwidth(BiquadType::HighPass, f0norm, 1.0f, 0.75f); diff --git a/alc/effects/null.cpp b/alc/effects/null.cpp index 1f9ae67b..964afe47 100644 --- a/alc/effects/null.cpp +++ b/alc/effects/null.cpp @@ -1,7 +1,7 @@ #include "config.h" -#include <stddef.h> +#include <cstddef> #include "almalloc.h" #include "alspan.h" @@ -25,8 +25,6 @@ struct NullState final : public EffectState { const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(NullState) }; /* This constructs the effect state. It's called when the object is first diff --git a/alc/effects/pshifter.cpp b/alc/effects/pshifter.cpp index 0c27be30..1cc1a18c 100644 --- a/alc/effects/pshifter.cpp +++ b/alc/effects/pshifter.cpp @@ -58,7 +58,7 @@ constexpr size_t StftStep{StftSize / OversampleFactor}; /* Define a Hann window, used to filter the STFT input and output. */ struct Windower { - alignas(16) std::array<float,StftSize> mData; + alignas(16) std::array<float,StftSize> mData{}; Windower() { @@ -74,12 +74,6 @@ struct Windower { const Windower gWindow{}; -struct PFFFTSetupDeleter { - void operator()(PFFFT_Setup *ptr) { pffft_destroy_setup(ptr); } -}; -using PFFFTSetupPtr = std::unique_ptr<PFFFT_Setup,PFFFTSetupDeleter>; - - struct FrequencyBin { float Magnitude; float FreqBin; @@ -88,29 +82,29 @@ struct FrequencyBin { struct PshifterState final : public EffectState { /* Effect parameters */ - size_t mCount; - size_t mPos; - uint mPitchShiftI; - float mPitchShift; + size_t mCount{}; + size_t mPos{}; + uint mPitchShiftI{}; + float mPitchShift{}; /* Effects buffers */ - std::array<float,StftSize> mFIFO; - std::array<float,StftHalfSize+1> mLastPhase; - std::array<float,StftHalfSize+1> mSumPhase; - std::array<float,StftSize> mOutputAccum; + std::array<float,StftSize> mFIFO{}; + std::array<float,StftHalfSize+1> mLastPhase{}; + std::array<float,StftHalfSize+1> mSumPhase{}; + std::array<float,StftSize> mOutputAccum{}; - PFFFTSetupPtr mFft; - alignas(16) std::array<float,StftSize> mFftBuffer; - alignas(16) std::array<float,StftSize> mFftWorkBuffer; + PFFFTSetup mFft; + alignas(16) std::array<float,StftSize> mFftBuffer{}; + alignas(16) std::array<float,StftSize> mFftWorkBuffer{}; - std::array<FrequencyBin,StftHalfSize+1> mAnalysisBuffer; - std::array<FrequencyBin,StftHalfSize+1> mSynthesisBuffer; + std::array<FrequencyBin,StftHalfSize+1> mAnalysisBuffer{}; + std::array<FrequencyBin,StftHalfSize+1> mSynthesisBuffer{}; - alignas(16) FloatBufferLine mBufferOut; + alignas(16) FloatBufferLine mBufferOut{}; /* Effect gains for each output channel */ - float mCurrentGains[MaxAmbiChannels]; - float mTargetGains[MaxAmbiChannels]; + std::array<float,MaxAmbiChannels> mCurrentGains{}; + std::array<float,MaxAmbiChannels> mTargetGains{}; void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; @@ -118,8 +112,6 @@ struct PshifterState final : public EffectState { const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(PshifterState) }; void PshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*) @@ -138,17 +130,18 @@ void PshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*) mAnalysisBuffer.fill(FrequencyBin{}); mSynthesisBuffer.fill(FrequencyBin{}); - std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f); - std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f); + mCurrentGains.fill(0.0f); + mTargetGains.fill(0.0f); if(!mFft) - mFft = PFFFTSetupPtr{pffft_new_setup(StftSize, PFFFT_REAL)}; + mFft = PFFFTSetup{StftSize, PFFFT_REAL}; } void PshifterState::update(const ContextBase*, const EffectSlot *slot, - const EffectProps *props, const EffectTarget target) + const EffectProps *props_, const EffectTarget target) { - const int tune{props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune}; + auto &props = std::get<PshifterProps>(*props_); + const int tune{props.CoarseTune*100 + props.FineTune}; const float pitch{std::pow(2.0f, static_cast<float>(tune) / 1200.0f)}; mPitchShiftI = clampu(fastf2u(pitch*MixerFracOne), MixerFracHalf, MixerFracOne*2); mPitchShift = static_cast<float>(mPitchShiftI) * float{1.0f/MixerFracOne}; @@ -197,8 +190,8 @@ void PshifterState::process(const size_t samplesToDo, mFftBuffer[k] = mFIFO[src] * gWindow.mData[k]; for(size_t src{0u}, k{StftSize-mPos};src < mPos;++src,++k) mFftBuffer[k] = mFIFO[src] * gWindow.mData[k]; - pffft_transform_ordered(mFft.get(), mFftBuffer.data(), mFftBuffer.data(), - mFftWorkBuffer.data(), PFFFT_FORWARD); + mFft.transform_ordered(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(), + PFFFT_FORWARD); /* Analyze the obtained data. Since the real FFT is symmetric, only * StftHalfSize+1 samples are needed. @@ -296,8 +289,8 @@ void PshifterState::process(const size_t samplesToDo, /* Apply an inverse FFT to get the time-domain signal, and accumulate * for the output with windowing. */ - pffft_transform_ordered(mFft.get(), mFftBuffer.data(), mFftBuffer.data(), - mFftWorkBuffer.data(), PFFFT_BACKWARD); + mFft.transform_ordered(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(), + PFFFT_BACKWARD); static constexpr float scale{3.0f / OversampleFactor / StftSize}; for(size_t dst{mPos}, k{0u};dst < StftSize;++dst,++k) @@ -311,8 +304,8 @@ void PshifterState::process(const size_t samplesToDo, } /* Now, mix the processed sound data to the output. */ - MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains, mTargetGains, - maxz(samplesToDo, 512), 0); + MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains.data(), + mTargetGains.data(), maxz(samplesToDo, 512), 0); } diff --git a/alc/effects/reverb.cpp b/alc/effects/reverb.cpp index 0f1fcca1..45bfaf0f 100644 --- a/alc/effects/reverb.cpp +++ b/alc/effects/reverb.cpp @@ -22,11 +22,12 @@ #include <algorithm> #include <array> +#include <cassert> +#include <cstdint> #include <cstdio> #include <functional> #include <iterator> #include <numeric> -#include <stdint.h> #include "alc/effects/base.h" #include "almalloc.h" @@ -48,11 +49,6 @@ #include "vecmat.h" #include "vector.h" -/* This is a user config option for modifying the overall output of the reverb - * effect. - */ -float ReverbBoost = 1.0f; - namespace { using uint = unsigned int; @@ -70,7 +66,7 @@ struct CubicFilter { static constexpr size_t sTableSteps{1 << sTableBits}; static constexpr size_t sTableMask{sTableSteps - 1}; - float mFilter[sTableSteps*2 + 1]{}; + std::array<float,sTableSteps*2 + 1> mFilter{}; constexpr CubicFilter() { @@ -90,10 +86,14 @@ struct CubicFilter { } } - constexpr float getCoeff0(size_t i) const noexcept { return mFilter[sTableSteps+i]; } - constexpr float getCoeff1(size_t i) const noexcept { return mFilter[i]; } - constexpr float getCoeff2(size_t i) const noexcept { return mFilter[sTableSteps-i]; } - constexpr float getCoeff3(size_t i) const noexcept { return mFilter[sTableSteps*2-i]; } + [[nodiscard]] constexpr auto getCoeff0(size_t i) const noexcept -> float + { return mFilter[sTableSteps+i]; } + [[nodiscard]] constexpr auto getCoeff1(size_t i) const noexcept -> float + { return mFilter[i]; } + [[nodiscard]] constexpr auto getCoeff2(size_t i) const noexcept -> float + { return mFilter[sTableSteps-i]; } + [[nodiscard]] constexpr auto getCoeff3(size_t i) const noexcept -> float + { return mFilter[sTableSteps*2-i]; } }; constexpr CubicFilter gCubicTable; @@ -124,12 +124,12 @@ constexpr float MODULATION_DEPTH_COEFF{0.05f}; * tetrahedral array of discrete signals (boosted by a factor of sqrt(3), to * reduce the error introduced in the conversion). */ -alignas(16) constexpr float B2A[NUM_LINES][NUM_LINES]{ - { 0.5f, 0.5f, 0.5f, 0.5f }, - { 0.5f, -0.5f, -0.5f, 0.5f }, - { 0.5f, 0.5f, -0.5f, -0.5f }, - { 0.5f, -0.5f, 0.5f, -0.5f } -}; +alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> B2A{{ + {{ 0.5f, 0.5f, 0.5f, 0.5f }}, + {{ 0.5f, -0.5f, -0.5f, 0.5f }}, + {{ 0.5f, 0.5f, -0.5f, -0.5f }}, + {{ 0.5f, -0.5f, 0.5f, -0.5f }} +}}; /* Converts (W-normalized) A-Format to B-Format for early reflections (scaled * by 1/sqrt(3) to compensate for the boost in the B2A matrix). @@ -252,7 +252,7 @@ constexpr std::array<float,NUM_LINES> EARLY_ALLPASS_LENGTHS{{ * Using an average dimension of 1m, we get: */ constexpr std::array<float,NUM_LINES> EARLY_LINE_LENGTHS{{ - 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f + 0.0000000e+0f, 4.9281100e-4f, 9.3916180e-4f, 1.3434322e-3f }}; /* The late all-pass filter lengths are based on the late line lengths: @@ -290,20 +290,16 @@ struct DelayLineI { * of 2 to allow the use of bit-masking instead of a modulus for wrapping. */ size_t Mask{0u}; - union { - uintptr_t LineOffset{0u}; - std::array<float,NUM_LINES> *Line; - }; + std::array<float,NUM_LINES> *Line; /* Given the allocated sample buffer, this function updates each delay line * offset. */ void realizeLineOffset(std::array<float,NUM_LINES> *sampleBuffer) noexcept - { Line = sampleBuffer + LineOffset; } + { Line = sampleBuffer; } /* Calculate the length of a delay line and store its mask and offset. */ - uint calcLineLength(const float length, const uintptr_t offset, const float frequency, - const uint extra) + size_t calcLineLength(const float length, const float frequency, const uint extra) { /* All line lengths are powers of 2, calculated from their lengths in * seconds, rounded up. @@ -313,7 +309,6 @@ struct DelayLineI { /* All lines share a single sample buffer. */ Mask = samples - 1; - LineOffset = offset; /* Return the sample count for accumulation. */ return samples; @@ -369,7 +364,7 @@ struct DelayLineI { struct VecAllpass { DelayLineI Delay; float Coeff{0.0f}; - size_t Offset[NUM_LINES]{}; + std::array<size_t,NUM_LINES> Offset{}; void process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset, const float xCoeff, const float yCoeff, const size_t todo); @@ -402,12 +397,12 @@ struct EarlyReflections { * reflections. */ DelayLineI Delay; - size_t Offset[NUM_LINES]{}; - float Coeff[NUM_LINES]{}; + std::array<size_t,NUM_LINES> Offset{}; + std::array<float,NUM_LINES> Coeff{}; /* The gain for each output channel based on 3D panning. */ - float CurrentGains[NUM_LINES][MaxAmbiChannels]{}; - float TargetGains[NUM_LINES][MaxAmbiChannels]{}; + std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> CurrentGains{}; + std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> TargetGains{}; void updateLines(const float density_mult, const float diffusion, const float decayTime, const float frequency); @@ -418,12 +413,12 @@ struct Modulation { /* The vibrato time is tracked with an index over a (MOD_FRACONE) * normalized range. */ - uint Index, Step; + uint Index{}, Step{}; /* The depth of frequency change, in samples. */ - float Depth; + float Depth{}; - float ModDelays[MAX_UPDATE_SAMPLES]; + std::array<float,MAX_UPDATE_SAMPLES> ModDelays{}; void updateModulator(float modTime, float modDepth, float frequency); @@ -433,7 +428,7 @@ struct Modulation { struct LateReverb { /* A recursive delay line is used fill in the reverb tail. */ DelayLineI Delay; - size_t Offset[NUM_LINES]{}; + std::array<size_t,NUM_LINES> Offset{}; /* Attenuation to compensate for the modal density and decay rate of the * late lines. @@ -441,7 +436,7 @@ struct LateReverb { float DensityGain{0.0f}; /* T60 decay filters are used to simulate absorption. */ - T60Filter T60[NUM_LINES]; + std::array<T60Filter,NUM_LINES> T60; Modulation Mod; @@ -449,8 +444,8 @@ struct LateReverb { VecAllpass VecAp; /* The gain for each output channel based on 3D panning. */ - float CurrentGains[NUM_LINES][MaxAmbiChannels]{}; - float TargetGains[NUM_LINES][MaxAmbiChannels]{}; + std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> CurrentGains{}; + std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> TargetGains{}; void updateLines(const float density_mult, const float diffusion, const float lfDecayTime, const float mfDecayTime, const float hfDecayTime, const float lf0norm, @@ -465,21 +460,22 @@ struct LateReverb { struct ReverbPipeline { /* Master effect filters */ - struct { + struct FilterPair { BiquadFilter Lp; BiquadFilter Hp; - } mFilter[NUM_LINES]; + }; + std::array<FilterPair,NUM_LINES> mFilter; /* Core delay line (early reflections and late reverb tap from this). */ DelayLineI mEarlyDelayIn; DelayLineI mLateDelayIn; /* Tap points for early reflection delay. */ - size_t mEarlyDelayTap[NUM_LINES][2]{}; - float mEarlyDelayCoeff[NUM_LINES]{}; + std::array<std::array<size_t,2>,NUM_LINES> mEarlyDelayTap{}; + std::array<float,NUM_LINES> mEarlyDelayCoeff{}; /* Tap points for late reverb feed and delay. */ - size_t mLateDelayTap[NUM_LINES][2]{}; + std::array<std::array<size_t,2>,NUM_LINES> mLateDelayTap{}; /* Coefficients for the all-pass and line scattering matrices. */ float mMixX{0.0f}; @@ -551,9 +547,9 @@ struct ReverbState final : public EffectState { Normal, }; PipelineState mPipelineState{DeviceClear}; - uint8_t mCurrentPipeline{0}; + bool mCurrentPipeline{false}; - ReverbPipeline mPipelines[2]; + std::array<ReverbPipeline,2> mPipelines; /* The current write offset for all delay lines. */ size_t mOffset{}; @@ -582,14 +578,14 @@ struct ReverbState final : public EffectState { for(size_t c{0u};c < NUM_LINES;c++) { const al::span<float> tmpspan{mEarlySamples[c].data(), todo}; - MixSamples(tmpspan, samplesOut, pipeline.mEarly.CurrentGains[c], - pipeline.mEarly.TargetGains[c], todo, 0); + MixSamples(tmpspan, samplesOut, pipeline.mEarly.CurrentGains[c].data(), + pipeline.mEarly.TargetGains[c].data(), todo, 0); } for(size_t c{0u};c < NUM_LINES;c++) { const al::span<float> tmpspan{mLateSamples[c].data(), todo}; - MixSamples(tmpspan, samplesOut, pipeline.mLate.CurrentGains[c], - pipeline.mLate.TargetGains[c], todo, 0); + MixSamples(tmpspan, samplesOut, pipeline.mLate.CurrentGains[c].data(), + pipeline.mLate.TargetGains[c].data(), todo, 0); } } @@ -632,8 +628,8 @@ struct ReverbState final : public EffectState { const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]}; pipeline.mAmbiSplitter[0][c].processHfScale(tmpspan, hfscale); - MixSamples(tmpspan, samplesOut, pipeline.mEarly.CurrentGains[c], - pipeline.mEarly.TargetGains[c], todo, 0); + MixSamples(tmpspan, samplesOut, pipeline.mEarly.CurrentGains[c].data(), + pipeline.mEarly.TargetGains[c].data(), todo, 0); } for(size_t c{0u};c < NUM_LINES;c++) { @@ -642,8 +638,8 @@ struct ReverbState final : public EffectState { const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]}; pipeline.mAmbiSplitter[1][c].processHfScale(tmpspan, hfscale); - MixSamples(tmpspan, samplesOut, pipeline.mLate.CurrentGains[c], - pipeline.mLate.TargetGains[c], todo, 0); + MixSamples(tmpspan, samplesOut, pipeline.mLate.CurrentGains[c].data(), + pipeline.mLate.TargetGains[c].data(), todo, 0); } } @@ -662,8 +658,6 @@ struct ReverbState final : public EffectState { const EffectTarget target) override; void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(ReverbState) }; /************************************** @@ -678,11 +672,6 @@ inline float CalcDelayLengthMult(float density) */ void ReverbState::allocLines(const float frequency) { - /* All delay line lengths are calculated to accommodate the full range of - * lengths given their respective parameters. - */ - size_t totalSamples{0u}; - /* Multiplier for the maximum density value, i.e. density=1, which is * actually the least density... */ @@ -692,8 +681,12 @@ void ReverbState::allocLines(const float frequency) * time and depth coefficient, and halfed for the low-to-high frequency * swing. */ - constexpr float max_mod_delay{MaxModulationTime*MODULATION_DEPTH_COEFF / 2.0f}; + static constexpr float max_mod_delay{MaxModulationTime*MODULATION_DEPTH_COEFF / 2.0f}; + + std::array<size_t,12> lineoffsets{}; + size_t oidx{0}; + size_t totalSamples{0u}; for(auto &pipeline : mPipelines) { /* The main delay length includes the maximum early reflection delay, @@ -702,37 +695,45 @@ void ReverbState::allocLines(const float frequency) * update size (BufferLineSize) for block processing. */ float length{ReverbMaxReflectionsDelay + EARLY_TAP_LENGTHS.back()*multiplier}; - totalSamples += pipeline.mEarlyDelayIn.calcLineLength(length, totalSamples, frequency, - BufferLineSize); + size_t count{pipeline.mEarlyDelayIn.calcLineLength(length, frequency, BufferLineSize)}; + lineoffsets[oidx++] = totalSamples; + totalSamples += count; - constexpr float LateLineDiffAvg{(LATE_LINE_LENGTHS.back()-LATE_LINE_LENGTHS.front()) / + static constexpr float LateDiffAvg{(LATE_LINE_LENGTHS.back()-LATE_LINE_LENGTHS.front()) / float{NUM_LINES}}; - length = ReverbMaxLateReverbDelay + LateLineDiffAvg*multiplier; - totalSamples += pipeline.mLateDelayIn.calcLineLength(length, totalSamples, frequency, - BufferLineSize); + length = ReverbMaxLateReverbDelay + LateDiffAvg*multiplier; + count = pipeline.mLateDelayIn.calcLineLength(length, frequency, BufferLineSize); + lineoffsets[oidx++] = totalSamples; + totalSamples += count; /* The early vector all-pass line. */ length = EARLY_ALLPASS_LENGTHS.back() * multiplier; - totalSamples += pipeline.mEarly.VecAp.Delay.calcLineLength(length, totalSamples, frequency, - 0); + count = pipeline.mEarly.VecAp.Delay.calcLineLength(length, frequency, 0); + lineoffsets[oidx++] = totalSamples; + totalSamples += count; /* The early reflection line. */ length = EARLY_LINE_LENGTHS.back() * multiplier; - totalSamples += pipeline.mEarly.Delay.calcLineLength(length, totalSamples, frequency, - MAX_UPDATE_SAMPLES); + count = pipeline.mEarly.Delay.calcLineLength(length, frequency, MAX_UPDATE_SAMPLES); + lineoffsets[oidx++] = totalSamples; + totalSamples += count; /* The late vector all-pass line. */ length = LATE_ALLPASS_LENGTHS.back() * multiplier; - totalSamples += pipeline.mLate.VecAp.Delay.calcLineLength(length, totalSamples, frequency, - 0); + count = pipeline.mLate.VecAp.Delay.calcLineLength(length, frequency, 0); + lineoffsets[oidx++] = totalSamples; + totalSamples += count; /* The late delay lines are calculated from the largest maximum density * line length, and the maximum modulation delay. Four additional * samples are needed for resampling the modulator delay. */ length = LATE_LINE_LENGTHS.back()*multiplier + max_mod_delay; - totalSamples += pipeline.mLate.Delay.calcLineLength(length, totalSamples, frequency, 4); + count = pipeline.mLate.Delay.calcLineLength(length, frequency, 4); + lineoffsets[oidx++] = totalSamples; + totalSamples += count; } + assert(oidx == lineoffsets.size()); if(totalSamples != mSampleBuffer.size()) decltype(mSampleBuffer)(totalSamples).swap(mSampleBuffer); @@ -741,14 +742,15 @@ void ReverbState::allocLines(const float frequency) std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), decltype(mSampleBuffer)::value_type{}); /* Update all delays to reflect the new sample buffer. */ + oidx = 0; for(auto &pipeline : mPipelines) { - pipeline.mEarlyDelayIn.realizeLineOffset(mSampleBuffer.data()); - pipeline.mLateDelayIn.realizeLineOffset(mSampleBuffer.data()); - pipeline.mEarly.VecAp.Delay.realizeLineOffset(mSampleBuffer.data()); - pipeline.mEarly.Delay.realizeLineOffset(mSampleBuffer.data()); - pipeline.mLate.VecAp.Delay.realizeLineOffset(mSampleBuffer.data()); - pipeline.mLate.Delay.realizeLineOffset(mSampleBuffer.data()); + pipeline.mEarlyDelayIn.realizeLineOffset(mSampleBuffer.data() + lineoffsets[oidx++]); + pipeline.mLateDelayIn.realizeLineOffset(mSampleBuffer.data() + lineoffsets[oidx++]); + pipeline.mEarly.VecAp.Delay.realizeLineOffset(mSampleBuffer.data() + lineoffsets[oidx++]); + pipeline.mEarly.Delay.realizeLineOffset(mSampleBuffer.data() + lineoffsets[oidx++]); + pipeline.mLate.VecAp.Delay.realizeLineOffset(mSampleBuffer.data() + lineoffsets[oidx++]); + pipeline.mLate.Delay.realizeLineOffset(mSampleBuffer.data() + lineoffsets[oidx++]); } } @@ -761,17 +763,16 @@ void ReverbState::deviceUpdate(const DeviceBase *device, const BufferStorage*) for(auto &pipeline : mPipelines) { - /* Clear filters and gain coefficients since the delay lines were all just - * cleared (if not reallocated). - */ + /* Clear filters and gain coefficients since the delay lines were all + * just cleared (if not reallocated). + */ for(auto &filter : pipeline.mFilter) { filter.Lp.clear(); filter.Hp.clear(); } - std::fill(std::begin(pipeline.mEarlyDelayCoeff),std::end(pipeline.mEarlyDelayCoeff), 0.0f); - std::fill(std::begin(pipeline.mEarlyDelayCoeff),std::end(pipeline.mEarlyDelayCoeff), 0.0f); + pipeline.mEarlyDelayCoeff.fill(0.0f); pipeline.mLate.DensityGain = 0.0f; for(auto &t60 : pipeline.mLate.T60) @@ -786,13 +787,13 @@ void ReverbState::deviceUpdate(const DeviceBase *device, const BufferStorage*) pipeline.mLate.Mod.Depth = 0.0f; for(auto &gains : pipeline.mEarly.CurrentGains) - std::fill(std::begin(gains), std::end(gains), 0.0f); + gains.fill(0.0f); for(auto &gains : pipeline.mEarly.TargetGains) - std::fill(std::begin(gains), std::end(gains), 0.0f); + gains.fill(0.0f); for(auto &gains : pipeline.mLate.CurrentGains) - std::fill(std::begin(gains), std::end(gains), 0.0f); + gains.fill(0.0f); for(auto &gains : pipeline.mLate.TargetGains) - std::fill(std::begin(gains), std::end(gains), 0.0f); + gains.fill(0.0f); } mPipelineState = DeviceClear; @@ -1057,7 +1058,7 @@ void ReverbPipeline::updateDelayLine(const float earlyDelay, const float lateDel * output. */ length = (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())/float{NUM_LINES}*density_mult + - std::max(lateDelay - EARLY_LINE_LENGTHS[0]*density_mult, 0.0f); + lateDelay; mLateDelayTap[i][1] = float2uint(length * frequency); } } @@ -1076,7 +1077,7 @@ std::array<std::array<float,4>,4> GetTransformFromVector(const al::span<const fl * rest of OpenAL which use right-handed. This is fixed by negating Z, * which cancels out with the B-Format Z negation. */ - float norm[3]; + std::array<float,3> norm; float mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])}; if(mag > 1.0f) { @@ -1185,75 +1186,73 @@ void ReverbPipeline::update3DPanning(const al::span<const float,3> ReflectionsPa } void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot, - const EffectProps *props, const EffectTarget target) + const EffectProps *props_, const EffectTarget target) { + auto &props = std::get<ReverbProps>(*props_); const DeviceBase *Device{Context->mDevice}; const auto frequency = static_cast<float>(Device->Frequency); /* If the HF limit parameter is flagged, calculate an appropriate limit * based on the air absorption parameter. */ - float hfRatio{props->Reverb.DecayHFRatio}; - if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f) - hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF, - props->Reverb.DecayTime); + float hfRatio{props.DecayHFRatio}; + if(props.DecayHFLimit && props.AirAbsorptionGainHF < 1.0f) + hfRatio = CalcLimitedHfRatio(hfRatio, props.AirAbsorptionGainHF, props.DecayTime); /* Calculate the LF/HF decay times. */ constexpr float MinDecayTime{0.1f}, MaxDecayTime{20.0f}; - const float lfDecayTime{clampf(props->Reverb.DecayTime*props->Reverb.DecayLFRatio, - MinDecayTime, MaxDecayTime)}; - const float hfDecayTime{clampf(props->Reverb.DecayTime*hfRatio, MinDecayTime, MaxDecayTime)}; + const float lfDecayTime{clampf(props.DecayTime*props.DecayLFRatio, MinDecayTime,MaxDecayTime)}; + const float hfDecayTime{clampf(props.DecayTime*hfRatio, MinDecayTime, MaxDecayTime)}; /* Determine if a full update is required. */ const bool fullUpdate{mPipelineState == DeviceClear || /* Density is essentially a master control for the feedback delays, so * changes the offsets of many delay lines. */ - mParams.Density != props->Reverb.Density || + mParams.Density != props.Density || /* Diffusion and decay times influences the decay rate (gain) of the * late reverb T60 filter. */ - mParams.Diffusion != props->Reverb.Diffusion || - mParams.DecayTime != props->Reverb.DecayTime || + mParams.Diffusion != props.Diffusion || + mParams.DecayTime != props.DecayTime || mParams.HFDecayTime != hfDecayTime || mParams.LFDecayTime != lfDecayTime || /* Modulation time and depth both require fading the modulation delay. */ - mParams.ModulationTime != props->Reverb.ModulationTime || - mParams.ModulationDepth != props->Reverb.ModulationDepth || + mParams.ModulationTime != props.ModulationTime || + mParams.ModulationDepth != props.ModulationDepth || /* HF/LF References control the weighting used to calculate the density * gain. */ - mParams.HFReference != props->Reverb.HFReference || - mParams.LFReference != props->Reverb.LFReference}; + mParams.HFReference != props.HFReference || + mParams.LFReference != props.LFReference}; if(fullUpdate) { - mParams.Density = props->Reverb.Density; - mParams.Diffusion = props->Reverb.Diffusion; - mParams.DecayTime = props->Reverb.DecayTime; + mParams.Density = props.Density; + mParams.Diffusion = props.Diffusion; + mParams.DecayTime = props.DecayTime; mParams.HFDecayTime = hfDecayTime; mParams.LFDecayTime = lfDecayTime; - mParams.ModulationTime = props->Reverb.ModulationTime; - mParams.ModulationDepth = props->Reverb.ModulationDepth; - mParams.HFReference = props->Reverb.HFReference; - mParams.LFReference = props->Reverb.LFReference; + mParams.ModulationTime = props.ModulationTime; + mParams.ModulationDepth = props.ModulationDepth; + mParams.HFReference = props.HFReference; + mParams.LFReference = props.LFReference; mPipelineState = (mPipelineState != DeviceClear) ? StartFade : Normal; - mCurrentPipeline ^= 1; + mCurrentPipeline = !mCurrentPipeline; } auto &pipeline = mPipelines[mCurrentPipeline]; /* Update early and late 3D panning. */ mOutTarget = target.Main->Buffer; - const float gain{props->Reverb.Gain * Slot->Gain * ReverbBoost}; - pipeline.update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan, - props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, mUpmixOutput, - target.Main); + const float gain{props.Gain * Slot->Gain * ReverbBoost}; + pipeline.update3DPanning(props.ReflectionsPan, props.LateReverbPan, props.ReflectionsGain*gain, + props.LateReverbGain*gain, mUpmixOutput, target.Main); /* Calculate the master filters */ - float hf0norm{minf(props->Reverb.HFReference/frequency, 0.49f)}; - pipeline.mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props->Reverb.GainHF, 1.0f); - float lf0norm{minf(props->Reverb.LFReference/frequency, 0.49f)}; - pipeline.mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props->Reverb.GainLF, 1.0f); + float hf0norm{minf(props.HFReference/frequency, 0.49f)}; + pipeline.mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props.GainHF, 1.0f); + float lf0norm{minf(props.LFReference/frequency, 0.49f)}; + pipeline.mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props.GainLF, 1.0f); for(size_t i{1u};i < NUM_LINES;i++) { pipeline.mFilter[i].Lp.copyParamsFrom(pipeline.mFilter[0].Lp); @@ -1261,34 +1260,32 @@ void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot, } /* The density-based room size (delay length) multiplier. */ - const float density_mult{CalcDelayLengthMult(props->Reverb.Density)}; + const float density_mult{CalcDelayLengthMult(props.Density)}; /* Update the main effect delay and associated taps. */ - pipeline.updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay, - density_mult, props->Reverb.DecayTime, frequency); + pipeline.updateDelayLine(props.ReflectionsDelay, props.LateReverbDelay, density_mult, + props.DecayTime, frequency); if(fullUpdate) { /* Update the early lines. */ - pipeline.mEarly.updateLines(density_mult, props->Reverb.Diffusion, props->Reverb.DecayTime, - frequency); + pipeline.mEarly.updateLines(density_mult, props.Diffusion, props.DecayTime, frequency); /* Get the mixing matrix coefficients. */ - CalcMatrixCoeffs(props->Reverb.Diffusion, &pipeline.mMixX, &pipeline.mMixY); + CalcMatrixCoeffs(props.Diffusion, &pipeline.mMixX, &pipeline.mMixY); /* Update the modulator rate and depth. */ - pipeline.mLate.Mod.updateModulator(props->Reverb.ModulationTime, - props->Reverb.ModulationDepth, frequency); + pipeline.mLate.Mod.updateModulator(props.ModulationTime, props.ModulationDepth, frequency); /* Update the late lines. */ - pipeline.mLate.updateLines(density_mult, props->Reverb.Diffusion, lfDecayTime, - props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency); + pipeline.mLate.updateLines(density_mult, props.Diffusion, lfDecayTime, props.DecayTime, + hfDecayTime, lf0norm, hf0norm, frequency); } /* Calculate the gain at the start of the late reverb stage, and the gain * difference from the decay target (0.001, or -60dB). */ - const float decayBase{props->Reverb.ReflectionsGain * props->Reverb.LateReverbGain}; + const float decayBase{props.ReflectionsGain * props.LateReverbGain}; const float decayDiff{ReverbDecayGain / decayBase}; if(decayDiff < 1.0f) @@ -1297,10 +1294,10 @@ void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot, * by -60dB), calculate the time to decay to -60dB from the start of * the late reverb. */ - const float diffTime{std::log10(decayDiff)*(20.0f / -60.0f) * props->Reverb.DecayTime}; + const float diffTime{std::log10(decayDiff)*(20.0f / -60.0f) * props.DecayTime}; - const float decaySamples{(props->Reverb.ReflectionsDelay + props->Reverb.LateReverbDelay - + diffTime) * frequency}; + const float decaySamples{(props.ReflectionsDelay+props.LateReverbDelay+diffTime) + * frequency}; /* Limit to 100,000 samples (a touch over 2 seconds at 48khz) to * avoid excessive double-processing. */ @@ -1311,8 +1308,7 @@ void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot, /* Otherwise, if the late reverb already starts at -60dB or less, only * include the time to get to the late reverb. */ - const float decaySamples{(props->Reverb.ReflectionsDelay + props->Reverb.LateReverbDelay) - * frequency}; + const float decaySamples{(props.ReflectionsDelay+props.LateReverbDelay) * frequency}; pipeline.mFadeSampleCount = static_cast<size_t>(minf(decaySamples, 100'000.0f)); } } @@ -1413,7 +1409,7 @@ void VecAllpass::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, siz ASSUME(todo > 0); - size_t vap_offset[NUM_LINES]; + std::array<size_t,NUM_LINES> vap_offset; for(size_t j{0u};j < NUM_LINES;j++) vap_offset[j] = offset - Offset[j]; for(size_t i{0u};i < todo;) @@ -1504,10 +1500,11 @@ void ReverbPipeline::processEarly(size_t offset, const size_t samplesToDo, mEarlyDelayTap[j][0] = mEarlyDelayTap[j][1]; } - /* Apply a vector all-pass, to help color the initial reflections based - * on the diffusion strength. + /* Apply a vector all-pass, to help color the initial reflections. + * Don't apply diffusion-based scattering since these are still the + * first reflections. */ - mEarly.VecAp.process(tempSamples, offset, mixX, mixY, todo); + mEarly.VecAp.process(tempSamples, offset, 1.0f, 0.0f, todo); /* Apply a delay and bounce to generate secondary reflections, combine * with the primary reflections and write out the result for mixing. @@ -1594,17 +1591,52 @@ void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo, /* First, calculate the modulated delays for the late feedback. */ mLate.Mod.calcDelays(todo); - /* Next, load decorrelated samples from the main and feedback delay - * lines. Filter the signal to apply its frequency-dependent decay. + /* Now load samples from the feedback delay lines. Filter the signal to + * apply its frequency-dependent decay. */ + for(size_t j{0u};j < NUM_LINES;++j) + { + size_t late_feedb_tap{offset - mLate.Offset[j]}; + const float midGain{mLate.T60[j].MidGain}; + + for(size_t i{0u};i < todo;++i) + { + /* Calculate the read offset and offset between it and the next + * sample. + */ + const float fdelay{mLate.Mod.ModDelays[i]}; + const size_t idelay{float2uint(fdelay * float{gCubicTable.sTableSteps})}; + const size_t delay{late_feedb_tap - (idelay>>gCubicTable.sTableBits)}; + const size_t delayoffset{idelay & gCubicTable.sTableMask}; + ++late_feedb_tap; + + /* Get the samples around by the delayed offset. */ + const float out0{late_delay.Line[(delay ) & late_delay.Mask][j]}; + const float out1{late_delay.Line[(delay-1) & late_delay.Mask][j]}; + const float out2{late_delay.Line[(delay-2) & late_delay.Mask][j]}; + const float out3{late_delay.Line[(delay-3) & late_delay.Mask][j]}; + + /* The output is obtained by interpolating the four samples + * that were acquired above, and combined with the main delay + * tap. + */ + const float out{out0*gCubicTable.getCoeff0(delayoffset) + + out1*gCubicTable.getCoeff1(delayoffset) + + out2*gCubicTable.getCoeff2(delayoffset) + + out3*gCubicTable.getCoeff3(delayoffset)}; + tempSamples[j][i] = out * midGain; + } + + mLate.T60[j].process({tempSamples[j].data(), todo}); + } + + /* Next load decorrelated samples from the main delay lines. */ const float fadeStep{1.0f / static_cast<float>(todo)}; - for(size_t j{0u};j < NUM_LINES;j++) + for(size_t j{0u};j < NUM_LINES;++j) { size_t late_delay_tap0{offset - mLateDelayTap[j][0]}; size_t late_delay_tap1{offset - mLateDelayTap[j][1]}; - size_t late_feedb_tap{offset - mLate.Offset[j]}; - const float midGain{mLate.T60[j].MidGain}; - const float densityGain{mLate.DensityGain * midGain}; + const float densityGain{mLate.DensityGain}; const float densityStep{late_delay_tap0 != late_delay_tap1 ? densityGain*fadeStep : 0.0f}; float fadeCount{0.0f}; @@ -1615,48 +1647,22 @@ void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo, late_delay_tap1 &= in_delay.Mask; size_t td{minz(todo-i, in_delay.Mask+1 - maxz(late_delay_tap0, late_delay_tap1))}; do { - /* Calculate the read offset and offset between it and the - * next sample. - */ - const float fdelay{mLate.Mod.ModDelays[i]}; - const size_t idelay{float2uint(fdelay * float{gCubicTable.sTableSteps})}; - const size_t delay{late_feedb_tap - (idelay>>gCubicTable.sTableBits)}; - const size_t delayoffset{idelay & gCubicTable.sTableMask}; - ++late_feedb_tap; - - /* Get the samples around by the delayed offset. */ - const float out0{late_delay.Line[(delay ) & late_delay.Mask][j]}; - const float out1{late_delay.Line[(delay-1) & late_delay.Mask][j]}; - const float out2{late_delay.Line[(delay-2) & late_delay.Mask][j]}; - const float out3{late_delay.Line[(delay-3) & late_delay.Mask][j]}; - - /* The output is obtained by interpolating the four samples - * that were acquired above, and combined with the main - * delay tap. - */ - const float out{out0*gCubicTable.getCoeff0(delayoffset) - + out1*gCubicTable.getCoeff1(delayoffset) - + out2*gCubicTable.getCoeff2(delayoffset) - + out3*gCubicTable.getCoeff3(delayoffset)}; const float fade0{densityGain - densityStep*fadeCount}; const float fade1{densityStep*fadeCount}; fadeCount += 1.0f; - tempSamples[j][i] = out*midGain + - in_delay.Line[late_delay_tap0++][j]*fade0 + + tempSamples[j][i] += in_delay.Line[late_delay_tap0++][j]*fade0 + in_delay.Line[late_delay_tap1++][j]*fade1; ++i; } while(--td); } mLateDelayTap[j][0] = mLateDelayTap[j][1]; - - mLate.T60[j].process({tempSamples[j].data(), todo}); } /* Apply a vector all-pass to improve micro-surface diffusion, and * write out the results for mixing. */ mLate.VecAp.process(tempSamples, offset, mixX, mixY, todo); - for(size_t j{0u};j < NUM_LINES;j++) + for(size_t j{0u};j < NUM_LINES;++j) std::copy_n(tempSamples[j].begin(), todo, outSamples[j].begin()+base); /* Finally, scatter and bounce the results to refeed the feedback buffer. */ @@ -1673,7 +1679,7 @@ void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBu ASSUME(samplesToDo > 0); - auto &oldpipeline = mPipelines[mCurrentPipeline^1]; + auto &oldpipeline = mPipelines[!mCurrentPipeline]; auto &pipeline = mPipelines[mCurrentPipeline]; if(mPipelineState >= Fading) @@ -1681,7 +1687,7 @@ void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBu /* Convert B-Format to A-Format for processing. */ const size_t numInput{minz(samplesIn.size(), NUM_LINES)}; const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo}; - for(size_t c{0u};c < NUM_LINES;c++) + for(size_t c{0u};c < NUM_LINES;++c) { std::fill(tmpspan.begin(), tmpspan.end(), 0.0f); for(size_t i{0};i < numInput;++i) @@ -1722,7 +1728,7 @@ void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBu const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo}; const float fadeStep{1.0f / static_cast<float>(samplesToDo)}; - for(size_t c{0u};c < NUM_LINES;c++) + for(size_t c{0u};c < NUM_LINES;++c) { std::fill(tmpspan.begin(), tmpspan.end(), 0.0f); for(size_t i{0};i < numInput;++i) @@ -1746,7 +1752,7 @@ void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBu filter.process(tmpspan, tmpspan.data()); pipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo); } - for(size_t c{0u};c < NUM_LINES;c++) + for(size_t c{0u};c < NUM_LINES;++c) { std::fill(tmpspan.begin(), tmpspan.end(), 0.0f); for(size_t i{0};i < numInput;++i) @@ -1783,7 +1789,7 @@ void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBu if(mPipelineState == Cleanup) { size_t numSamples{mSampleBuffer.size()/2}; - size_t pipelineOffset{numSamples * (mCurrentPipeline^1)}; + size_t pipelineOffset{numSamples * (!mCurrentPipeline)}; std::fill_n(mSampleBuffer.data()+pipelineOffset, numSamples, decltype(mSampleBuffer)::value_type{}); diff --git a/alc/effects/vmorpher.cpp b/alc/effects/vmorpher.cpp index 872c7add..eaf30d07 100644 --- a/alc/effects/vmorpher.cpp +++ b/alc/effects/vmorpher.cpp @@ -57,29 +57,30 @@ namespace { using uint = unsigned int; -#define MAX_UPDATE_SAMPLES 256 -#define NUM_FORMANTS 4 -#define NUM_FILTERS 2 -#define Q_FACTOR 5.0f - -#define VOWEL_A_INDEX 0 -#define VOWEL_B_INDEX 1 +constexpr size_t MaxUpdateSamples{256}; +constexpr size_t NumFormants{4}; +constexpr float QFactor{5.0f}; +enum : size_t { + VowelAIndex, + VowelBIndex, + NumFilters +}; -#define WAVEFORM_FRACBITS 24 -#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS) -#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1) +constexpr size_t WaveformFracBits{24}; +constexpr size_t WaveformFracOne{1<<WaveformFracBits}; +constexpr size_t WaveformFracMask{WaveformFracOne-1}; inline float Sin(uint index) { - constexpr float scale{al::numbers::pi_v<float>*2.0f / WAVEFORM_FRACONE}; + constexpr float scale{al::numbers::pi_v<float>*2.0f / float{WaveformFracOne}}; return std::sin(static_cast<float>(index) * scale)*0.5f + 0.5f; } inline float Saw(uint index) -{ return static_cast<float>(index) / float{WAVEFORM_FRACONE}; } +{ return static_cast<float>(index) / float{WaveformFracOne}; } inline float Triangle(uint index) -{ return std::fabs(static_cast<float>(index)*(2.0f/WAVEFORM_FRACONE) - 1.0f); } +{ return std::fabs(static_cast<float>(index)*(2.0f/WaveformFracOne) - 1.0f); } inline float Half(uint) { return 0.5f; } @@ -89,13 +90,12 @@ void Oscillate(float *RESTRICT dst, uint index, const uint step, size_t todo) for(size_t i{0u};i < todo;i++) { index += step; - index &= WAVEFORM_FRACMASK; + index &= WaveformFracMask; dst[i] = func(index); } } -struct FormantFilter -{ +struct FormantFilter { float mCoeff{0.0f}; float mGain{1.0f}; float mS1{0.0f}; @@ -106,20 +106,21 @@ struct FormantFilter : mCoeff{std::tan(al::numbers::pi_v<float> * f0norm)}, mGain{gain} { } - inline void process(const float *samplesIn, float *samplesOut, const size_t numInput) + void process(const float *samplesIn, float *samplesOut, const size_t numInput) noexcept { /* A state variable filter from a topology-preserving transform. * Based on a talk given by Ivan Cohen: https://www.youtube.com/watch?v=esjHXGPyrhg */ const float g{mCoeff}; const float gain{mGain}; - const float h{1.0f / (1.0f + (g/Q_FACTOR) + (g*g))}; + const float h{1.0f / (1.0f + (g/QFactor) + (g*g))}; + const float coeff{1.0f/QFactor + g}; float s1{mS1}; float s2{mS2}; for(size_t i{0u};i < numInput;i++) { - const float H{(samplesIn[i] - (1.0f/Q_FACTOR + g)*s1 - s2)*h}; + const float H{(samplesIn[i] - coeff*s1 - s2)*h}; const float B{g*H + s1}; const float L{g*B + s2}; @@ -133,7 +134,7 @@ struct FormantFilter mS2 = s2; } - inline void clear() + void clear() noexcept { mS1 = 0.0f; mS2 = 0.0f; @@ -142,16 +143,17 @@ struct FormantFilter struct VmorpherState final : public EffectState { - struct { + struct OutParams { uint mTargetChannel{InvalidChannelIndex}; /* Effect parameters */ - FormantFilter mFormants[NUM_FILTERS][NUM_FORMANTS]; + std::array<std::array<FormantFilter,NumFormants>,NumFilters> mFormants; /* Effect gains for each channel */ float mCurrentGain{}; float mTargetGain{}; - } mChans[MaxAmbiChannels]; + }; + std::array<OutParams,MaxAmbiChannels> mChans; void (*mGetSamples)(float*RESTRICT, uint, const uint, size_t){}; @@ -159,9 +161,9 @@ struct VmorpherState final : public EffectState { uint mStep{1}; /* Effects buffers */ - alignas(16) float mSampleBufferA[MAX_UPDATE_SAMPLES]{}; - alignas(16) float mSampleBufferB[MAX_UPDATE_SAMPLES]{}; - alignas(16) float mLfo[MAX_UPDATE_SAMPLES]{}; + alignas(16) std::array<float,MaxUpdateSamples> mSampleBufferA{}; + alignas(16) std::array<float,MaxUpdateSamples> mSampleBufferB{}; + alignas(16) std::array<float,MaxUpdateSamples> mLfo{}; void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, @@ -169,14 +171,12 @@ struct VmorpherState final : public EffectState { void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; - static std::array<FormantFilter,4> getFiltersByPhoneme(VMorpherPhenome phoneme, - float frequency, float pitch); - - DEF_NEWDEL(VmorpherState) + static std::array<FormantFilter,NumFormants> getFiltersByPhoneme(VMorpherPhenome phoneme, + float frequency, float pitch) noexcept; }; -std::array<FormantFilter,4> VmorpherState::getFiltersByPhoneme(VMorpherPhenome phoneme, - float frequency, float pitch) +std::array<FormantFilter,NumFormants> VmorpherState::getFiltersByPhoneme(VMorpherPhenome phoneme, + float frequency, float pitch) noexcept { /* Using soprano formant set of values to * better match mid-range frequency space. @@ -232,44 +232,43 @@ void VmorpherState::deviceUpdate(const DeviceBase*, const BufferStorage*) for(auto &e : mChans) { e.mTargetChannel = InvalidChannelIndex; - std::for_each(std::begin(e.mFormants[VOWEL_A_INDEX]), std::end(e.mFormants[VOWEL_A_INDEX]), + std::for_each(e.mFormants[VowelAIndex].begin(), e.mFormants[VowelAIndex].end(), std::mem_fn(&FormantFilter::clear)); - std::for_each(std::begin(e.mFormants[VOWEL_B_INDEX]), std::end(e.mFormants[VOWEL_B_INDEX]), + std::for_each(e.mFormants[VowelBIndex].begin(), e.mFormants[VowelBIndex].end(), std::mem_fn(&FormantFilter::clear)); e.mCurrentGain = 0.0f; } } void VmorpherState::update(const ContextBase *context, const EffectSlot *slot, - const EffectProps *props, const EffectTarget target) + const EffectProps *props_, const EffectTarget target) { + auto &props = std::get<VmorpherProps>(*props_); const DeviceBase *device{context->mDevice}; const float frequency{static_cast<float>(device->Frequency)}; - const float step{props->Vmorpher.Rate / frequency}; - mStep = fastf2u(clampf(step*WAVEFORM_FRACONE, 0.0f, float{WAVEFORM_FRACONE-1})); + const float step{props.Rate / frequency}; + mStep = fastf2u(clampf(step*WaveformFracOne, 0.0f, float{WaveformFracOne}-1.0f)); if(mStep == 0) mGetSamples = Oscillate<Half>; - else if(props->Vmorpher.Waveform == VMorpherWaveform::Sinusoid) + else if(props.Waveform == VMorpherWaveform::Sinusoid) mGetSamples = Oscillate<Sin>; - else if(props->Vmorpher.Waveform == VMorpherWaveform::Triangle) + else if(props.Waveform == VMorpherWaveform::Triangle) mGetSamples = Oscillate<Triangle>; - else /*if(props->Vmorpher.Waveform == VMorpherWaveform::Sawtooth)*/ + else /*if(props.Waveform == VMorpherWaveform::Sawtooth)*/ mGetSamples = Oscillate<Saw>; - const float pitchA{std::pow(2.0f, - static_cast<float>(props->Vmorpher.PhonemeACoarseTuning) / 12.0f)}; - const float pitchB{std::pow(2.0f, - static_cast<float>(props->Vmorpher.PhonemeBCoarseTuning) / 12.0f)}; + const float pitchA{std::pow(2.0f, static_cast<float>(props.PhonemeACoarseTuning) / 12.0f)}; + const float pitchB{std::pow(2.0f, static_cast<float>(props.PhonemeBCoarseTuning) / 12.0f)}; - auto vowelA = getFiltersByPhoneme(props->Vmorpher.PhonemeA, frequency, pitchA); - auto vowelB = getFiltersByPhoneme(props->Vmorpher.PhonemeB, frequency, pitchB); + auto vowelA = getFiltersByPhoneme(props.PhonemeA, frequency, pitchA); + auto vowelB = getFiltersByPhoneme(props.PhonemeB, frequency, pitchB); /* Copy the filter coefficients to the input channels. */ for(size_t i{0u};i < slot->Wet.Buffer.size();++i) { - std::copy(vowelA.begin(), vowelA.end(), std::begin(mChans[i].mFormants[VOWEL_A_INDEX])); - std::copy(vowelB.begin(), vowelB.end(), std::begin(mChans[i].mFormants[VOWEL_B_INDEX])); + std::copy(vowelA.begin(), vowelA.end(), mChans[i].mFormants[VowelAIndex].begin()); + std::copy(vowelB.begin(), vowelB.end(), mChans[i].mFormants[VowelBIndex].begin()); } mOutTarget = target.Main->Buffer; @@ -288,11 +287,11 @@ void VmorpherState::process(const size_t samplesToDo, const al::span<const Float */ for(size_t base{0u};base < samplesToDo;) { - const size_t td{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)}; + const size_t td{minz(MaxUpdateSamples, samplesToDo-base)}; - mGetSamples(mLfo, mIndex, mStep, td); + mGetSamples(mLfo.data(), mIndex, mStep, td); mIndex += static_cast<uint>(mStep * td); - mIndex &= WAVEFORM_FRACMASK; + mIndex &= WaveformFracMask; auto chandata = std::begin(mChans); for(const auto &input : samplesIn) @@ -304,30 +303,30 @@ void VmorpherState::process(const size_t samplesToDo, const al::span<const Float continue; } - auto& vowelA = chandata->mFormants[VOWEL_A_INDEX]; - auto& vowelB = chandata->mFormants[VOWEL_B_INDEX]; + const auto vowelA = al::span{chandata->mFormants[VowelAIndex]}; + const auto vowelB = al::span{chandata->mFormants[VowelBIndex]}; /* Process first vowel. */ std::fill_n(std::begin(mSampleBufferA), td, 0.0f); - vowelA[0].process(&input[base], mSampleBufferA, td); - vowelA[1].process(&input[base], mSampleBufferA, td); - vowelA[2].process(&input[base], mSampleBufferA, td); - vowelA[3].process(&input[base], mSampleBufferA, td); + vowelA[0].process(&input[base], mSampleBufferA.data(), td); + vowelA[1].process(&input[base], mSampleBufferA.data(), td); + vowelA[2].process(&input[base], mSampleBufferA.data(), td); + vowelA[3].process(&input[base], mSampleBufferA.data(), td); /* Process second vowel. */ std::fill_n(std::begin(mSampleBufferB), td, 0.0f); - vowelB[0].process(&input[base], mSampleBufferB, td); - vowelB[1].process(&input[base], mSampleBufferB, td); - vowelB[2].process(&input[base], mSampleBufferB, td); - vowelB[3].process(&input[base], mSampleBufferB, td); + vowelB[0].process(&input[base], mSampleBufferB.data(), td); + vowelB[1].process(&input[base], mSampleBufferB.data(), td); + vowelB[2].process(&input[base], mSampleBufferB.data(), td); + vowelB[3].process(&input[base], mSampleBufferB.data(), td); - alignas(16) float blended[MAX_UPDATE_SAMPLES]; + alignas(16) std::array<float,MaxUpdateSamples> blended; for(size_t i{0u};i < td;i++) blended[i] = lerpf(mSampleBufferA[i], mSampleBufferB[i], mLfo[i]); /* Now, mix the processed sound data to the output. */ - MixSamples({blended, td}, samplesOut[outidx].data()+base, chandata->mCurrentGain, - chandata->mTargetGain, samplesToDo-base); + MixSamples({blended.data(), td}, samplesOut[outidx].data()+base, + chandata->mCurrentGain, chandata->mTargetGain, samplesToDo-base); ++chandata; } |