aboutsummaryrefslogtreecommitdiffstats
path: root/core/mixer/mixer_c.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'core/mixer/mixer_c.cpp')
-rw-r--r--core/mixer/mixer_c.cpp218
1 files changed, 218 insertions, 0 deletions
diff --git a/core/mixer/mixer_c.cpp b/core/mixer/mixer_c.cpp
new file mode 100644
index 00000000..28a92ef7
--- /dev/null
+++ b/core/mixer/mixer_c.cpp
@@ -0,0 +1,218 @@
+#include "config.h"
+
+#include <cassert>
+#include <cmath>
+#include <limits>
+
+#include "alnumeric.h"
+#include "core/bsinc_defs.h"
+#include "core/cubic_defs.h"
+#include "defs.h"
+#include "hrtfbase.h"
+
+struct CTag;
+struct PointTag;
+struct LerpTag;
+struct CubicTag;
+struct BSincTag;
+struct FastBSincTag;
+
+
+namespace {
+
+constexpr uint BsincPhaseDiffBits{MixerFracBits - BSincPhaseBits};
+constexpr uint BsincPhaseDiffOne{1 << BsincPhaseDiffBits};
+constexpr uint BsincPhaseDiffMask{BsincPhaseDiffOne - 1u};
+
+constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits};
+constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits};
+constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u};
+
+inline float do_point(const InterpState&, const float *RESTRICT vals, const uint)
+{ return vals[0]; }
+inline float do_lerp(const InterpState&, const float *RESTRICT vals, const uint frac)
+{ return lerpf(vals[0], vals[1], static_cast<float>(frac)*(1.0f/MixerFracOne)); }
+inline float do_cubic(const InterpState &istate, const float *RESTRICT vals, const uint frac)
+{
+ /* Calculate the phase index and factor. */
+ const uint pi{frac >> CubicPhaseDiffBits};
+ const float pf{static_cast<float>(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)};
+
+ const float *RESTRICT fil{al::assume_aligned<16>(istate.cubic.filter[pi].mCoeffs)};
+ const float *RESTRICT phd{al::assume_aligned<16>(istate.cubic.filter[pi].mDeltas)};
+
+ /* Apply the phase interpolated filter. */
+ return (fil[0] + pf*phd[0])*vals[0] + (fil[1] + pf*phd[1])*vals[1]
+ + (fil[2] + pf*phd[2])*vals[2] + (fil[3] + pf*phd[3])*vals[3];
+}
+inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
+{
+ const size_t m{istate.bsinc.m};
+ ASSUME(m > 0);
+
+ /* Calculate the phase index and factor. */
+ const uint pi{frac >> BsincPhaseDiffBits};
+ const float pf{static_cast<float>(frac&BsincPhaseDiffMask) * (1.0f/BsincPhaseDiffOne)};
+
+ const float *RESTRICT fil{istate.bsinc.filter + m*pi*2};
+ const float *RESTRICT phd{fil + m};
+ const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
+ const float *RESTRICT spd{scd + m};
+
+ /* Apply the scale and phase interpolated filter. */
+ float r{0.0f};
+ for(size_t j_f{0};j_f < m;j_f++)
+ r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
+ return r;
+}
+inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
+{
+ const size_t m{istate.bsinc.m};
+ ASSUME(m > 0);
+
+ /* Calculate the phase index and factor. */
+ const uint pi{frac >> BsincPhaseDiffBits};
+ const float pf{static_cast<float>(frac&BsincPhaseDiffMask) * (1.0f/BsincPhaseDiffOne)};
+
+ const float *RESTRICT fil{istate.bsinc.filter + m*pi*2};
+ const float *RESTRICT phd{fil + m};
+
+ /* Apply the phase interpolated filter. */
+ float r{0.0f};
+ for(size_t j_f{0};j_f < m;j_f++)
+ r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
+ return r;
+}
+
+using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const uint);
+template<SamplerT Sampler>
+void DoResample(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ const InterpState istate{*state};
+ ASSUME(frac < MixerFracOne);
+ for(float &out : dst)
+ {
+ out = Sampler(istate, src, frac);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
+ const float left, const float right)
+{
+ ASSUME(IrSize >= MinIrLength);
+ for(size_t c{0};c < IrSize;++c)
+ {
+ Values[c][0] += Coeffs[c][0] * left;
+ Values[c][1] += Coeffs[c][1] * right;
+ }
+}
+
+force_inline void MixLine(const al::span<const float> InSamples, float *RESTRICT dst,
+ float &CurrentGain, const float TargetGain, const float delta, const size_t min_len,
+ size_t Counter)
+{
+ float gain{CurrentGain};
+ const float step{(TargetGain-gain) * delta};
+
+ size_t pos{0};
+ if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
+ gain = TargetGain;
+ else
+ {
+ float step_count{0.0f};
+ for(;pos != min_len;++pos)
+ {
+ dst[pos] += InSamples[pos] * (gain + step*step_count);
+ step_count += 1.0f;
+ }
+ if(pos == Counter)
+ gain = TargetGain;
+ else
+ gain += step*step_count;
+ }
+ CurrentGain = gain;
+
+ if(!(std::abs(gain) > GainSilenceThreshold))
+ return;
+ for(;pos != InSamples.size();++pos)
+ dst[pos] += InSamples[pos] * gain;
+}
+
+} // namespace
+
+template<>
+void Resample_<PointTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{ DoResample<do_point>(state, src, frac, increment, dst); }
+
+template<>
+void Resample_<LerpTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{ DoResample<do_lerp>(state, src, frac, increment, dst); }
+
+template<>
+void Resample_<CubicTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{ DoResample<do_cubic>(state, src-1, frac, increment, dst); }
+
+template<>
+void Resample_<BSincTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{ DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
+
+template<>
+void Resample_<FastBSincTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{ DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
+
+
+template<>
+void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const MixHrtfFilter *hrtfparams, const size_t BufferSize)
+{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
+
+template<>
+void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
+{
+ MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
+ BufferSize);
+}
+
+template<>
+void MixDirectHrtf_<CTag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
+ const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
+ float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
+{
+ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
+ IrSize, BufferSize);
+}
+
+
+template<>
+void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
+ float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+
+ for(FloatBufferLine &output : OutBuffer)
+ MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++,
+ *TargetGains++, delta, min_len, Counter);
+}
+
+template<>
+void Mix_<CTag>(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain,
+ const float TargetGain, const size_t Counter)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+
+ MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain,
+ TargetGain, delta, min_len, Counter);
+}