diff options
Diffstat (limited to 'core/mixer/mixer_c.cpp')
-rw-r--r-- | core/mixer/mixer_c.cpp | 218 |
1 files changed, 218 insertions, 0 deletions
diff --git a/core/mixer/mixer_c.cpp b/core/mixer/mixer_c.cpp new file mode 100644 index 00000000..28a92ef7 --- /dev/null +++ b/core/mixer/mixer_c.cpp @@ -0,0 +1,218 @@ +#include "config.h" + +#include <cassert> +#include <cmath> +#include <limits> + +#include "alnumeric.h" +#include "core/bsinc_defs.h" +#include "core/cubic_defs.h" +#include "defs.h" +#include "hrtfbase.h" + +struct CTag; +struct PointTag; +struct LerpTag; +struct CubicTag; +struct BSincTag; +struct FastBSincTag; + + +namespace { + +constexpr uint BsincPhaseDiffBits{MixerFracBits - BSincPhaseBits}; +constexpr uint BsincPhaseDiffOne{1 << BsincPhaseDiffBits}; +constexpr uint BsincPhaseDiffMask{BsincPhaseDiffOne - 1u}; + +constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits}; +constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits}; +constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u}; + +inline float do_point(const InterpState&, const float *RESTRICT vals, const uint) +{ return vals[0]; } +inline float do_lerp(const InterpState&, const float *RESTRICT vals, const uint frac) +{ return lerpf(vals[0], vals[1], static_cast<float>(frac)*(1.0f/MixerFracOne)); } +inline float do_cubic(const InterpState &istate, const float *RESTRICT vals, const uint frac) +{ + /* Calculate the phase index and factor. */ + const uint pi{frac >> CubicPhaseDiffBits}; + const float pf{static_cast<float>(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)}; + + const float *RESTRICT fil{al::assume_aligned<16>(istate.cubic.filter[pi].mCoeffs)}; + const float *RESTRICT phd{al::assume_aligned<16>(istate.cubic.filter[pi].mDeltas)}; + + /* Apply the phase interpolated filter. */ + return (fil[0] + pf*phd[0])*vals[0] + (fil[1] + pf*phd[1])*vals[1] + + (fil[2] + pf*phd[2])*vals[2] + (fil[3] + pf*phd[3])*vals[3]; +} +inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac) +{ + const size_t m{istate.bsinc.m}; + ASSUME(m > 0); + + /* Calculate the phase index and factor. */ + const uint pi{frac >> BsincPhaseDiffBits}; + const float pf{static_cast<float>(frac&BsincPhaseDiffMask) * (1.0f/BsincPhaseDiffOne)}; + + const float *RESTRICT fil{istate.bsinc.filter + m*pi*2}; + const float *RESTRICT phd{fil + m}; + const float *RESTRICT scd{fil + BSincPhaseCount*2*m}; + const float *RESTRICT spd{scd + m}; + + /* Apply the scale and phase interpolated filter. */ + float r{0.0f}; + for(size_t j_f{0};j_f < m;j_f++) + r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f]; + return r; +} +inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac) +{ + const size_t m{istate.bsinc.m}; + ASSUME(m > 0); + + /* Calculate the phase index and factor. */ + const uint pi{frac >> BsincPhaseDiffBits}; + const float pf{static_cast<float>(frac&BsincPhaseDiffMask) * (1.0f/BsincPhaseDiffOne)}; + + const float *RESTRICT fil{istate.bsinc.filter + m*pi*2}; + const float *RESTRICT phd{fil + m}; + + /* Apply the phase interpolated filter. */ + float r{0.0f}; + for(size_t j_f{0};j_f < m;j_f++) + r += (fil[j_f] + pf*phd[j_f]) * vals[j_f]; + return r; +} + +using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const uint); +template<SamplerT Sampler> +void DoResample(const InterpState *state, const float *RESTRICT src, uint frac, + const uint increment, const al::span<float> dst) +{ + const InterpState istate{*state}; + ASSUME(frac < MixerFracOne); + for(float &out : dst) + { + out = Sampler(istate, src, frac); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } +} + +inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs, + const float left, const float right) +{ + ASSUME(IrSize >= MinIrLength); + for(size_t c{0};c < IrSize;++c) + { + Values[c][0] += Coeffs[c][0] * left; + Values[c][1] += Coeffs[c][1] * right; + } +} + +force_inline void MixLine(const al::span<const float> InSamples, float *RESTRICT dst, + float &CurrentGain, const float TargetGain, const float delta, const size_t min_len, + size_t Counter) +{ + float gain{CurrentGain}; + const float step{(TargetGain-gain) * delta}; + + size_t pos{0}; + if(!(std::abs(step) > std::numeric_limits<float>::epsilon())) + gain = TargetGain; + else + { + float step_count{0.0f}; + for(;pos != min_len;++pos) + { + dst[pos] += InSamples[pos] * (gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = TargetGain; + else + gain += step*step_count; + } + CurrentGain = gain; + + if(!(std::abs(gain) > GainSilenceThreshold)) + return; + for(;pos != InSamples.size();++pos) + dst[pos] += InSamples[pos] * gain; +} + +} // namespace + +template<> +void Resample_<PointTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac, + const uint increment, const al::span<float> dst) +{ DoResample<do_point>(state, src, frac, increment, dst); } + +template<> +void Resample_<LerpTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac, + const uint increment, const al::span<float> dst) +{ DoResample<do_lerp>(state, src, frac, increment, dst); } + +template<> +void Resample_<CubicTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac, + const uint increment, const al::span<float> dst) +{ DoResample<do_cubic>(state, src-1, frac, increment, dst); } + +template<> +void Resample_<BSincTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac, + const uint increment, const al::span<float> dst) +{ DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); } + +template<> +void Resample_<FastBSincTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac, + const uint increment, const al::span<float> dst) +{ DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); } + + +template<> +void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const MixHrtfFilter *hrtfparams, const size_t BufferSize) +{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } + +template<> +void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams, + BufferSize); +} + +template<> +void MixDirectHrtf_<CTag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, + float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, + IrSize, BufferSize); +} + + +template<> +void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, + float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) +{ + const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; + const auto min_len = minz(Counter, InSamples.size()); + + for(FloatBufferLine &output : OutBuffer) + MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++, + *TargetGains++, delta, min_len, Counter); +} + +template<> +void Mix_<CTag>(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain, + const float TargetGain, const size_t Counter) +{ + const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; + const auto min_len = minz(Counter, InSamples.size()); + + MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain, + TargetGain, delta, min_len, Counter); +} |