aboutsummaryrefslogtreecommitdiffstats
path: root/core/mixer
diff options
context:
space:
mode:
Diffstat (limited to 'core/mixer')
-rw-r--r--core/mixer/defs.h109
-rw-r--r--core/mixer/hrtfbase.h129
-rw-r--r--core/mixer/hrtfdefs.h53
-rw-r--r--core/mixer/mixer_c.cpp218
-rw-r--r--core/mixer/mixer_neon.cpp362
-rw-r--r--core/mixer/mixer_sse.cpp327
-rw-r--r--core/mixer/mixer_sse2.cpp90
-rw-r--r--core/mixer/mixer_sse3.cpp0
-rw-r--r--core/mixer/mixer_sse41.cpp95
9 files changed, 1383 insertions, 0 deletions
diff --git a/core/mixer/defs.h b/core/mixer/defs.h
new file mode 100644
index 00000000..48daca9b
--- /dev/null
+++ b/core/mixer/defs.h
@@ -0,0 +1,109 @@
+#ifndef CORE_MIXER_DEFS_H
+#define CORE_MIXER_DEFS_H
+
+#include <array>
+#include <stdlib.h>
+
+#include "alspan.h"
+#include "core/bufferline.h"
+#include "core/resampler_limits.h"
+
+struct CubicCoefficients;
+struct HrtfChannelState;
+struct HrtfFilter;
+struct MixHrtfFilter;
+
+using uint = unsigned int;
+using float2 = std::array<float,2>;
+
+
+constexpr int MixerFracBits{16};
+constexpr int MixerFracOne{1 << MixerFracBits};
+constexpr int MixerFracMask{MixerFracOne - 1};
+constexpr int MixerFracHalf{MixerFracOne >> 1};
+
+constexpr float GainSilenceThreshold{0.00001f}; /* -100dB */
+
+
+enum class Resampler : uint8_t {
+ Point,
+ Linear,
+ Cubic,
+ FastBSinc12,
+ BSinc12,
+ FastBSinc24,
+ BSinc24,
+
+ Max = BSinc24
+};
+
+/* Interpolator state. Kind of a misnomer since the interpolator itself is
+ * stateless. This just keeps it from having to recompute scale-related
+ * mappings for every sample.
+ */
+struct BsincState {
+ float sf; /* Scale interpolation factor. */
+ uint m; /* Coefficient count. */
+ uint l; /* Left coefficient offset. */
+ /* Filter coefficients, followed by the phase, scale, and scale-phase
+ * delta coefficients. Starting at phase index 0, each subsequent phase
+ * index follows contiguously.
+ */
+ const float *filter;
+};
+
+struct CubicState {
+ /* Filter coefficients, and coefficient deltas. Starting at phase index 0,
+ * each subsequent phase index follows contiguously.
+ */
+ const CubicCoefficients *filter;
+};
+
+union InterpState {
+ CubicState cubic;
+ BsincState bsinc;
+};
+
+using ResamplerFunc = void(*)(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst);
+
+ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state);
+
+
+template<typename TypeTag, typename InstTag>
+void Resample_(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst);
+
+template<typename InstTag>
+void Mix_(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
+ float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos);
+template<typename InstTag>
+void Mix_(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain,
+ const float TargetGain, const size_t Counter);
+
+template<typename InstTag>
+void MixHrtf_(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const MixHrtfFilter *hrtfparams, const size_t BufferSize);
+template<typename InstTag>
+void MixHrtfBlend_(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize);
+template<typename InstTag>
+void MixDirectHrtf_(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
+ const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
+ float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize);
+
+/* Vectorized resampler helpers */
+template<size_t N>
+inline void InitPosArrays(uint frac, uint increment, uint (&frac_arr)[N], uint (&pos_arr)[N])
+{
+ pos_arr[0] = 0;
+ frac_arr[0] = frac;
+ for(size_t i{1};i < N;i++)
+ {
+ const uint frac_tmp{frac_arr[i-1] + increment};
+ pos_arr[i] = pos_arr[i-1] + (frac_tmp>>MixerFracBits);
+ frac_arr[i] = frac_tmp&MixerFracMask;
+ }
+}
+
+#endif /* CORE_MIXER_DEFS_H */
diff --git a/core/mixer/hrtfbase.h b/core/mixer/hrtfbase.h
new file mode 100644
index 00000000..36f88e49
--- /dev/null
+++ b/core/mixer/hrtfbase.h
@@ -0,0 +1,129 @@
+#ifndef CORE_MIXER_HRTFBASE_H
+#define CORE_MIXER_HRTFBASE_H
+
+#include <algorithm>
+#include <cmath>
+
+#include "almalloc.h"
+#include "hrtfdefs.h"
+#include "opthelpers.h"
+
+
+using uint = unsigned int;
+
+using ApplyCoeffsT = void(&)(float2 *RESTRICT Values, const size_t irSize,
+ const ConstHrirSpan Coeffs, const float left, const float right);
+
+template<ApplyCoeffsT ApplyCoeffs>
+inline void MixHrtfBase(const float *InSamples, float2 *RESTRICT AccumSamples, const size_t IrSize,
+ const MixHrtfFilter *hrtfparams, const size_t BufferSize)
+{
+ ASSUME(BufferSize > 0);
+
+ const ConstHrirSpan Coeffs{hrtfparams->Coeffs};
+ const float gainstep{hrtfparams->GainStep};
+ const float gain{hrtfparams->Gain};
+
+ size_t ldelay{HrtfHistoryLength - hrtfparams->Delay[0]};
+ size_t rdelay{HrtfHistoryLength - hrtfparams->Delay[1]};
+ float stepcount{0.0f};
+ for(size_t i{0u};i < BufferSize;++i)
+ {
+ const float g{gain + gainstep*stepcount};
+ const float left{InSamples[ldelay++] * g};
+ const float right{InSamples[rdelay++] * g};
+ ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, left, right);
+
+ stepcount += 1.0f;
+ }
+}
+
+template<ApplyCoeffsT ApplyCoeffs>
+inline void MixHrtfBlendBase(const float *InSamples, float2 *RESTRICT AccumSamples,
+ const size_t IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
+ const size_t BufferSize)
+{
+ ASSUME(BufferSize > 0);
+
+ const ConstHrirSpan OldCoeffs{oldparams->Coeffs};
+ const float oldGainStep{oldparams->Gain / static_cast<float>(BufferSize)};
+ const ConstHrirSpan NewCoeffs{newparams->Coeffs};
+ const float newGainStep{newparams->GainStep};
+
+ if(oldparams->Gain > GainSilenceThreshold) LIKELY
+ {
+ size_t ldelay{HrtfHistoryLength - oldparams->Delay[0]};
+ size_t rdelay{HrtfHistoryLength - oldparams->Delay[1]};
+ auto stepcount = static_cast<float>(BufferSize);
+ for(size_t i{0u};i < BufferSize;++i)
+ {
+ const float g{oldGainStep*stepcount};
+ const float left{InSamples[ldelay++] * g};
+ const float right{InSamples[rdelay++] * g};
+ ApplyCoeffs(AccumSamples+i, IrSize, OldCoeffs, left, right);
+
+ stepcount -= 1.0f;
+ }
+ }
+
+ if(newGainStep*static_cast<float>(BufferSize) > GainSilenceThreshold) LIKELY
+ {
+ size_t ldelay{HrtfHistoryLength+1 - newparams->Delay[0]};
+ size_t rdelay{HrtfHistoryLength+1 - newparams->Delay[1]};
+ float stepcount{1.0f};
+ for(size_t i{1u};i < BufferSize;++i)
+ {
+ const float g{newGainStep*stepcount};
+ const float left{InSamples[ldelay++] * g};
+ const float right{InSamples[rdelay++] * g};
+ ApplyCoeffs(AccumSamples+i, IrSize, NewCoeffs, left, right);
+
+ stepcount += 1.0f;
+ }
+ }
+}
+
+template<ApplyCoeffsT ApplyCoeffs>
+inline void MixDirectHrtfBase(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
+ const al::span<const FloatBufferLine> InSamples, float2 *RESTRICT AccumSamples,
+ float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
+{
+ ASSUME(BufferSize > 0);
+
+ for(const FloatBufferLine &input : InSamples)
+ {
+ /* For dual-band processing, the signal needs extra scaling applied to
+ * the high frequency response. The band-splitter applies this scaling
+ * with a consistent phase shift regardless of the scale amount.
+ */
+ ChanState->mSplitter.processHfScale({input.data(), BufferSize}, TempBuf,
+ ChanState->mHfScale);
+
+ /* Now apply the HRIR coefficients to this channel. */
+ const float *RESTRICT tempbuf{al::assume_aligned<16>(TempBuf)};
+ const ConstHrirSpan Coeffs{ChanState->mCoeffs};
+ for(size_t i{0u};i < BufferSize;++i)
+ {
+ const float insample{tempbuf[i]};
+ ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, insample, insample);
+ }
+
+ ++ChanState;
+ }
+
+ /* Add the HRTF signal to the existing "direct" signal. */
+ float *RESTRICT left{al::assume_aligned<16>(LeftOut.data())};
+ float *RESTRICT right{al::assume_aligned<16>(RightOut.data())};
+ for(size_t i{0u};i < BufferSize;++i)
+ left[i] += AccumSamples[i][0];
+ for(size_t i{0u};i < BufferSize;++i)
+ right[i] += AccumSamples[i][1];
+
+ /* Copy the new in-progress accumulation values to the front and clear the
+ * following samples for the next mix.
+ */
+ auto accum_iter = std::copy_n(AccumSamples+BufferSize, HrirLength, AccumSamples);
+ std::fill_n(accum_iter, BufferSize, float2{});
+}
+
+#endif /* CORE_MIXER_HRTFBASE_H */
diff --git a/core/mixer/hrtfdefs.h b/core/mixer/hrtfdefs.h
new file mode 100644
index 00000000..3c903ed8
--- /dev/null
+++ b/core/mixer/hrtfdefs.h
@@ -0,0 +1,53 @@
+#ifndef CORE_MIXER_HRTFDEFS_H
+#define CORE_MIXER_HRTFDEFS_H
+
+#include <array>
+
+#include "alspan.h"
+#include "core/ambidefs.h"
+#include "core/bufferline.h"
+#include "core/filters/splitter.h"
+
+
+using float2 = std::array<float,2>;
+using ubyte = unsigned char;
+using ubyte2 = std::array<ubyte,2>;
+using ushort = unsigned short;
+using uint = unsigned int;
+using uint2 = std::array<uint,2>;
+
+constexpr uint HrtfHistoryBits{6};
+constexpr uint HrtfHistoryLength{1 << HrtfHistoryBits};
+constexpr uint HrtfHistoryMask{HrtfHistoryLength - 1};
+
+constexpr uint HrirBits{7};
+constexpr uint HrirLength{1 << HrirBits};
+constexpr uint HrirMask{HrirLength - 1};
+
+constexpr uint MinIrLength{8};
+
+using HrirArray = std::array<float2,HrirLength>;
+using HrirSpan = al::span<float2,HrirLength>;
+using ConstHrirSpan = al::span<const float2,HrirLength>;
+
+struct MixHrtfFilter {
+ const ConstHrirSpan Coeffs;
+ uint2 Delay;
+ float Gain;
+ float GainStep;
+};
+
+struct HrtfFilter {
+ alignas(16) HrirArray Coeffs;
+ uint2 Delay;
+ float Gain;
+};
+
+
+struct HrtfChannelState {
+ BandSplitter mSplitter;
+ float mHfScale{};
+ alignas(16) HrirArray mCoeffs{};
+};
+
+#endif /* CORE_MIXER_HRTFDEFS_H */
diff --git a/core/mixer/mixer_c.cpp b/core/mixer/mixer_c.cpp
new file mode 100644
index 00000000..28a92ef7
--- /dev/null
+++ b/core/mixer/mixer_c.cpp
@@ -0,0 +1,218 @@
+#include "config.h"
+
+#include <cassert>
+#include <cmath>
+#include <limits>
+
+#include "alnumeric.h"
+#include "core/bsinc_defs.h"
+#include "core/cubic_defs.h"
+#include "defs.h"
+#include "hrtfbase.h"
+
+struct CTag;
+struct PointTag;
+struct LerpTag;
+struct CubicTag;
+struct BSincTag;
+struct FastBSincTag;
+
+
+namespace {
+
+constexpr uint BsincPhaseDiffBits{MixerFracBits - BSincPhaseBits};
+constexpr uint BsincPhaseDiffOne{1 << BsincPhaseDiffBits};
+constexpr uint BsincPhaseDiffMask{BsincPhaseDiffOne - 1u};
+
+constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits};
+constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits};
+constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u};
+
+inline float do_point(const InterpState&, const float *RESTRICT vals, const uint)
+{ return vals[0]; }
+inline float do_lerp(const InterpState&, const float *RESTRICT vals, const uint frac)
+{ return lerpf(vals[0], vals[1], static_cast<float>(frac)*(1.0f/MixerFracOne)); }
+inline float do_cubic(const InterpState &istate, const float *RESTRICT vals, const uint frac)
+{
+ /* Calculate the phase index and factor. */
+ const uint pi{frac >> CubicPhaseDiffBits};
+ const float pf{static_cast<float>(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)};
+
+ const float *RESTRICT fil{al::assume_aligned<16>(istate.cubic.filter[pi].mCoeffs)};
+ const float *RESTRICT phd{al::assume_aligned<16>(istate.cubic.filter[pi].mDeltas)};
+
+ /* Apply the phase interpolated filter. */
+ return (fil[0] + pf*phd[0])*vals[0] + (fil[1] + pf*phd[1])*vals[1]
+ + (fil[2] + pf*phd[2])*vals[2] + (fil[3] + pf*phd[3])*vals[3];
+}
+inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
+{
+ const size_t m{istate.bsinc.m};
+ ASSUME(m > 0);
+
+ /* Calculate the phase index and factor. */
+ const uint pi{frac >> BsincPhaseDiffBits};
+ const float pf{static_cast<float>(frac&BsincPhaseDiffMask) * (1.0f/BsincPhaseDiffOne)};
+
+ const float *RESTRICT fil{istate.bsinc.filter + m*pi*2};
+ const float *RESTRICT phd{fil + m};
+ const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
+ const float *RESTRICT spd{scd + m};
+
+ /* Apply the scale and phase interpolated filter. */
+ float r{0.0f};
+ for(size_t j_f{0};j_f < m;j_f++)
+ r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
+ return r;
+}
+inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
+{
+ const size_t m{istate.bsinc.m};
+ ASSUME(m > 0);
+
+ /* Calculate the phase index and factor. */
+ const uint pi{frac >> BsincPhaseDiffBits};
+ const float pf{static_cast<float>(frac&BsincPhaseDiffMask) * (1.0f/BsincPhaseDiffOne)};
+
+ const float *RESTRICT fil{istate.bsinc.filter + m*pi*2};
+ const float *RESTRICT phd{fil + m};
+
+ /* Apply the phase interpolated filter. */
+ float r{0.0f};
+ for(size_t j_f{0};j_f < m;j_f++)
+ r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
+ return r;
+}
+
+using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const uint);
+template<SamplerT Sampler>
+void DoResample(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ const InterpState istate{*state};
+ ASSUME(frac < MixerFracOne);
+ for(float &out : dst)
+ {
+ out = Sampler(istate, src, frac);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
+ const float left, const float right)
+{
+ ASSUME(IrSize >= MinIrLength);
+ for(size_t c{0};c < IrSize;++c)
+ {
+ Values[c][0] += Coeffs[c][0] * left;
+ Values[c][1] += Coeffs[c][1] * right;
+ }
+}
+
+force_inline void MixLine(const al::span<const float> InSamples, float *RESTRICT dst,
+ float &CurrentGain, const float TargetGain, const float delta, const size_t min_len,
+ size_t Counter)
+{
+ float gain{CurrentGain};
+ const float step{(TargetGain-gain) * delta};
+
+ size_t pos{0};
+ if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
+ gain = TargetGain;
+ else
+ {
+ float step_count{0.0f};
+ for(;pos != min_len;++pos)
+ {
+ dst[pos] += InSamples[pos] * (gain + step*step_count);
+ step_count += 1.0f;
+ }
+ if(pos == Counter)
+ gain = TargetGain;
+ else
+ gain += step*step_count;
+ }
+ CurrentGain = gain;
+
+ if(!(std::abs(gain) > GainSilenceThreshold))
+ return;
+ for(;pos != InSamples.size();++pos)
+ dst[pos] += InSamples[pos] * gain;
+}
+
+} // namespace
+
+template<>
+void Resample_<PointTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{ DoResample<do_point>(state, src, frac, increment, dst); }
+
+template<>
+void Resample_<LerpTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{ DoResample<do_lerp>(state, src, frac, increment, dst); }
+
+template<>
+void Resample_<CubicTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{ DoResample<do_cubic>(state, src-1, frac, increment, dst); }
+
+template<>
+void Resample_<BSincTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{ DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
+
+template<>
+void Resample_<FastBSincTag,CTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{ DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
+
+
+template<>
+void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const MixHrtfFilter *hrtfparams, const size_t BufferSize)
+{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
+
+template<>
+void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
+{
+ MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
+ BufferSize);
+}
+
+template<>
+void MixDirectHrtf_<CTag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
+ const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
+ float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
+{
+ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
+ IrSize, BufferSize);
+}
+
+
+template<>
+void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
+ float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+
+ for(FloatBufferLine &output : OutBuffer)
+ MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++,
+ *TargetGains++, delta, min_len, Counter);
+}
+
+template<>
+void Mix_<CTag>(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain,
+ const float TargetGain, const size_t Counter)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+
+ MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain,
+ TargetGain, delta, min_len, Counter);
+}
diff --git a/core/mixer/mixer_neon.cpp b/core/mixer/mixer_neon.cpp
new file mode 100644
index 00000000..ef2936b3
--- /dev/null
+++ b/core/mixer/mixer_neon.cpp
@@ -0,0 +1,362 @@
+#include "config.h"
+
+#include <arm_neon.h>
+
+#include <cmath>
+#include <limits>
+
+#include "alnumeric.h"
+#include "core/bsinc_defs.h"
+#include "core/cubic_defs.h"
+#include "defs.h"
+#include "hrtfbase.h"
+
+struct NEONTag;
+struct LerpTag;
+struct CubicTag;
+struct BSincTag;
+struct FastBSincTag;
+
+
+#if defined(__GNUC__) && !defined(__clang__) && !defined(__ARM_NEON)
+#pragma GCC target("fpu=neon")
+#endif
+
+namespace {
+
+constexpr uint BSincPhaseDiffBits{MixerFracBits - BSincPhaseBits};
+constexpr uint BSincPhaseDiffOne{1 << BSincPhaseDiffBits};
+constexpr uint BSincPhaseDiffMask{BSincPhaseDiffOne - 1u};
+
+constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits};
+constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits};
+constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u};
+
+inline float32x4_t set_f4(float l0, float l1, float l2, float l3)
+{
+ float32x4_t ret{vmovq_n_f32(l0)};
+ ret = vsetq_lane_f32(l1, ret, 1);
+ ret = vsetq_lane_f32(l2, ret, 2);
+ ret = vsetq_lane_f32(l3, ret, 3);
+ return ret;
+}
+
+inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
+ const float left, const float right)
+{
+ float32x4_t leftright4;
+ {
+ float32x2_t leftright2{vmov_n_f32(left)};
+ leftright2 = vset_lane_f32(right, leftright2, 1);
+ leftright4 = vcombine_f32(leftright2, leftright2);
+ }
+
+ ASSUME(IrSize >= MinIrLength);
+ for(size_t c{0};c < IrSize;c += 2)
+ {
+ float32x4_t vals = vld1q_f32(&Values[c][0]);
+ float32x4_t coefs = vld1q_f32(&Coeffs[c][0]);
+
+ vals = vmlaq_f32(vals, coefs, leftright4);
+
+ vst1q_f32(&Values[c][0], vals);
+ }
+}
+
+force_inline void MixLine(const al::span<const float> InSamples, float *RESTRICT dst,
+ float &CurrentGain, const float TargetGain, const float delta, const size_t min_len,
+ const size_t aligned_len, size_t Counter)
+{
+ float gain{CurrentGain};
+ const float step{(TargetGain-gain) * delta};
+
+ size_t pos{0};
+ if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
+ gain = TargetGain;
+ else
+ {
+ float step_count{0.0f};
+ /* Mix with applying gain steps in aligned multiples of 4. */
+ if(size_t todo{min_len >> 2})
+ {
+ const float32x4_t four4{vdupq_n_f32(4.0f)};
+ const float32x4_t step4{vdupq_n_f32(step)};
+ const float32x4_t gain4{vdupq_n_f32(gain)};
+ float32x4_t step_count4{vdupq_n_f32(0.0f)};
+ step_count4 = vsetq_lane_f32(1.0f, step_count4, 1);
+ step_count4 = vsetq_lane_f32(2.0f, step_count4, 2);
+ step_count4 = vsetq_lane_f32(3.0f, step_count4, 3);
+
+ do {
+ const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
+ float32x4_t dry4 = vld1q_f32(&dst[pos]);
+ dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
+ step_count4 = vaddq_f32(step_count4, four4);
+ vst1q_f32(&dst[pos], dry4);
+ pos += 4;
+ } while(--todo);
+ /* NOTE: step_count4 now represents the next four counts after the
+ * last four mixed samples, so the lowest element represents the
+ * next step count to apply.
+ */
+ step_count = vgetq_lane_f32(step_count4, 0);
+ }
+ /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
+ for(size_t leftover{min_len&3};leftover;++pos,--leftover)
+ {
+ dst[pos] += InSamples[pos] * (gain + step*step_count);
+ step_count += 1.0f;
+ }
+ if(pos == Counter)
+ gain = TargetGain;
+ else
+ gain += step*step_count;
+
+ /* Mix until pos is aligned with 4 or the mix is done. */
+ for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
+ dst[pos] += InSamples[pos] * gain;
+ }
+ CurrentGain = gain;
+
+ if(!(std::abs(gain) > GainSilenceThreshold))
+ return;
+ if(size_t todo{(InSamples.size()-pos) >> 2})
+ {
+ const float32x4_t gain4 = vdupq_n_f32(gain);
+ do {
+ const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
+ float32x4_t dry4 = vld1q_f32(&dst[pos]);
+ dry4 = vmlaq_f32(dry4, val4, gain4);
+ vst1q_f32(&dst[pos], dry4);
+ pos += 4;
+ } while(--todo);
+ }
+ for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
+ dst[pos] += InSamples[pos] * gain;
+}
+
+} // namespace
+
+template<>
+void Resample_<LerpTag,NEONTag>(const InterpState*, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ ASSUME(frac < MixerFracOne);
+
+ const int32x4_t increment4 = vdupq_n_s32(static_cast<int>(increment*4));
+ const float32x4_t fracOne4 = vdupq_n_f32(1.0f/MixerFracOne);
+ const int32x4_t fracMask4 = vdupq_n_s32(MixerFracMask);
+ alignas(16) uint pos_[4], frac_[4];
+ int32x4_t pos4, frac4;
+
+ InitPosArrays(frac, increment, frac_, pos_);
+ frac4 = vld1q_s32(reinterpret_cast<int*>(frac_));
+ pos4 = vld1q_s32(reinterpret_cast<int*>(pos_));
+
+ auto dst_iter = dst.begin();
+ for(size_t todo{dst.size()>>2};todo;--todo)
+ {
+ const int pos0{vgetq_lane_s32(pos4, 0)};
+ const int pos1{vgetq_lane_s32(pos4, 1)};
+ const int pos2{vgetq_lane_s32(pos4, 2)};
+ const int pos3{vgetq_lane_s32(pos4, 3)};
+ const float32x4_t val1{set_f4(src[pos0], src[pos1], src[pos2], src[pos3])};
+ const float32x4_t val2{set_f4(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])};
+
+ /* val1 + (val2-val1)*mu */
+ const float32x4_t r0{vsubq_f32(val2, val1)};
+ const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)};
+ const float32x4_t out{vmlaq_f32(val1, mu, r0)};
+
+ vst1q_f32(dst_iter, out);
+ dst_iter += 4;
+
+ frac4 = vaddq_s32(frac4, increment4);
+ pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, MixerFracBits));
+ frac4 = vandq_s32(frac4, fracMask4);
+ }
+
+ if(size_t todo{dst.size()&3})
+ {
+ src += static_cast<uint>(vgetq_lane_s32(pos4, 0));
+ frac = static_cast<uint>(vgetq_lane_s32(frac4, 0));
+
+ do {
+ *(dst_iter++) = lerpf(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne));
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ } while(--todo);
+ }
+}
+
+template<>
+void Resample_<CubicTag,NEONTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ ASSUME(frac < MixerFracOne);
+
+ const CubicCoefficients *RESTRICT filter = al::assume_aligned<16>(state->cubic.filter);
+
+ src -= 1;
+ for(float &out_sample : dst)
+ {
+ const uint pi{frac >> CubicPhaseDiffBits};
+ const float pf{static_cast<float>(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)};
+ const float32x4_t pf4{vdupq_n_f32(pf)};
+
+ /* Apply the phase interpolated filter. */
+
+ /* f = fil + pf*phd */
+ const float32x4_t f4 = vmlaq_f32(vld1q_f32(filter[pi].mCoeffs), pf4,
+ vld1q_f32(filter[pi].mDeltas));
+ /* r = f*src */
+ float32x4_t r4{vmulq_f32(f4, vld1q_f32(src))};
+
+ r4 = vaddq_f32(r4, vrev64q_f32(r4));
+ out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+template<>
+void Resample_<BSincTag,NEONTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ const float *const filter{state->bsinc.filter};
+ const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)};
+ const size_t m{state->bsinc.m};
+ ASSUME(m > 0);
+ ASSUME(frac < MixerFracOne);
+
+ src -= state->bsinc.l;
+ for(float &out_sample : dst)
+ {
+ // Calculate the phase index and factor.
+ const uint pi{frac >> BSincPhaseDiffBits};
+ const float pf{static_cast<float>(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)};
+
+ // Apply the scale and phase interpolated filter.
+ float32x4_t r4{vdupq_n_f32(0.0f)};
+ {
+ const float32x4_t pf4{vdupq_n_f32(pf)};
+ const float *RESTRICT fil{filter + m*pi*2};
+ const float *RESTRICT phd{fil + m};
+ const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
+ const float *RESTRICT spd{scd + m};
+ size_t td{m >> 2};
+ size_t j{0u};
+
+ do {
+ /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
+ const float32x4_t f4 = vmlaq_f32(
+ vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j])),
+ pf4, vmlaq_f32(vld1q_f32(&phd[j]), sf4, vld1q_f32(&spd[j])));
+ /* r += f*src */
+ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
+ j += 4;
+ } while(--td);
+ }
+ r4 = vaddq_f32(r4, vrev64q_f32(r4));
+ out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+template<>
+void Resample_<FastBSincTag,NEONTag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ const float *const filter{state->bsinc.filter};
+ const size_t m{state->bsinc.m};
+ ASSUME(m > 0);
+ ASSUME(frac < MixerFracOne);
+
+ src -= state->bsinc.l;
+ for(float &out_sample : dst)
+ {
+ // Calculate the phase index and factor.
+ const uint pi{frac >> BSincPhaseDiffBits};
+ const float pf{static_cast<float>(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)};
+
+ // Apply the phase interpolated filter.
+ float32x4_t r4{vdupq_n_f32(0.0f)};
+ {
+ const float32x4_t pf4{vdupq_n_f32(pf)};
+ const float *RESTRICT fil{filter + m*pi*2};
+ const float *RESTRICT phd{fil + m};
+ size_t td{m >> 2};
+ size_t j{0u};
+
+ do {
+ /* f = fil + pf*phd */
+ const float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), pf4, vld1q_f32(&phd[j]));
+ /* r += f*src */
+ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
+ j += 4;
+ } while(--td);
+ }
+ r4 = vaddq_f32(r4, vrev64q_f32(r4));
+ out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+
+template<>
+void MixHrtf_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const MixHrtfFilter *hrtfparams, const size_t BufferSize)
+{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
+
+template<>
+void MixHrtfBlend_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
+{
+ MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
+ BufferSize);
+}
+
+template<>
+void MixDirectHrtf_<NEONTag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
+ const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
+ float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
+{
+ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
+ IrSize, BufferSize);
+}
+
+
+template<>
+void Mix_<NEONTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
+ float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+ const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
+
+ for(FloatBufferLine &output : OutBuffer)
+ MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++,
+ *TargetGains++, delta, min_len, aligned_len, Counter);
+}
+
+template<>
+void Mix_<NEONTag>(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain,
+ const float TargetGain, const size_t Counter)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+ const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
+
+ MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain, TargetGain, delta, min_len,
+ aligned_len, Counter);
+}
diff --git a/core/mixer/mixer_sse.cpp b/core/mixer/mixer_sse.cpp
new file mode 100644
index 00000000..0aa5d5fb
--- /dev/null
+++ b/core/mixer/mixer_sse.cpp
@@ -0,0 +1,327 @@
+#include "config.h"
+
+#include <xmmintrin.h>
+
+#include <cmath>
+#include <limits>
+
+#include "alnumeric.h"
+#include "core/bsinc_defs.h"
+#include "core/cubic_defs.h"
+#include "defs.h"
+#include "hrtfbase.h"
+
+struct SSETag;
+struct CubicTag;
+struct BSincTag;
+struct FastBSincTag;
+
+
+#if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE__)
+#pragma GCC target("sse")
+#endif
+
+namespace {
+
+constexpr uint BSincPhaseDiffBits{MixerFracBits - BSincPhaseBits};
+constexpr uint BSincPhaseDiffOne{1 << BSincPhaseDiffBits};
+constexpr uint BSincPhaseDiffMask{BSincPhaseDiffOne - 1u};
+
+constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits};
+constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits};
+constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u};
+
+#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
+
+inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
+ const float left, const float right)
+{
+ const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
+
+ ASSUME(IrSize >= MinIrLength);
+ /* This isn't technically correct to test alignment, but it's true for
+ * systems that support SSE, which is the only one that needs to know the
+ * alignment of Values (which alternates between 8- and 16-byte aligned).
+ */
+ if(!(reinterpret_cast<uintptr_t>(Values)&15))
+ {
+ for(size_t i{0};i < IrSize;i += 2)
+ {
+ const __m128 coeffs{_mm_load_ps(Coeffs[i].data())};
+ __m128 vals{_mm_load_ps(Values[i].data())};
+ vals = MLA4(vals, lrlr, coeffs);
+ _mm_store_ps(Values[i].data(), vals);
+ }
+ }
+ else
+ {
+ __m128 imp0, imp1;
+ __m128 coeffs{_mm_load_ps(Coeffs[0].data())};
+ __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(Values[0].data()))};
+ imp0 = _mm_mul_ps(lrlr, coeffs);
+ vals = _mm_add_ps(imp0, vals);
+ _mm_storel_pi(reinterpret_cast<__m64*>(Values[0].data()), vals);
+ size_t td{((IrSize+1)>>1) - 1};
+ size_t i{1};
+ do {
+ coeffs = _mm_load_ps(Coeffs[i+1].data());
+ vals = _mm_load_ps(Values[i].data());
+ imp1 = _mm_mul_ps(lrlr, coeffs);
+ imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
+ vals = _mm_add_ps(imp0, vals);
+ _mm_store_ps(Values[i].data(), vals);
+ imp0 = imp1;
+ i += 2;
+ } while(--td);
+ vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(Values[i].data()));
+ imp0 = _mm_movehl_ps(imp0, imp0);
+ vals = _mm_add_ps(imp0, vals);
+ _mm_storel_pi(reinterpret_cast<__m64*>(Values[i].data()), vals);
+ }
+}
+
+force_inline void MixLine(const al::span<const float> InSamples, float *RESTRICT dst,
+ float &CurrentGain, const float TargetGain, const float delta, const size_t min_len,
+ const size_t aligned_len, size_t Counter)
+{
+ float gain{CurrentGain};
+ const float step{(TargetGain-gain) * delta};
+
+ size_t pos{0};
+ if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
+ gain = TargetGain;
+ else
+ {
+ float step_count{0.0f};
+ /* Mix with applying gain steps in aligned multiples of 4. */
+ if(size_t todo{min_len >> 2})
+ {
+ const __m128 four4{_mm_set1_ps(4.0f)};
+ const __m128 step4{_mm_set1_ps(step)};
+ const __m128 gain4{_mm_set1_ps(gain)};
+ __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
+ do {
+ const __m128 val4{_mm_load_ps(&InSamples[pos])};
+ __m128 dry4{_mm_load_ps(&dst[pos])};
+
+ /* dry += val * (gain + step*step_count) */
+ dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
+
+ _mm_store_ps(&dst[pos], dry4);
+ step_count4 = _mm_add_ps(step_count4, four4);
+ pos += 4;
+ } while(--todo);
+ /* NOTE: step_count4 now represents the next four counts after the
+ * last four mixed samples, so the lowest element represents the
+ * next step count to apply.
+ */
+ step_count = _mm_cvtss_f32(step_count4);
+ }
+ /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
+ for(size_t leftover{min_len&3};leftover;++pos,--leftover)
+ {
+ dst[pos] += InSamples[pos] * (gain + step*step_count);
+ step_count += 1.0f;
+ }
+ if(pos == Counter)
+ gain = TargetGain;
+ else
+ gain += step*step_count;
+
+ /* Mix until pos is aligned with 4 or the mix is done. */
+ for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
+ dst[pos] += InSamples[pos] * gain;
+ }
+ CurrentGain = gain;
+
+ if(!(std::abs(gain) > GainSilenceThreshold))
+ return;
+ if(size_t todo{(InSamples.size()-pos) >> 2})
+ {
+ const __m128 gain4{_mm_set1_ps(gain)};
+ do {
+ const __m128 val4{_mm_load_ps(&InSamples[pos])};
+ __m128 dry4{_mm_load_ps(&dst[pos])};
+ dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
+ _mm_store_ps(&dst[pos], dry4);
+ pos += 4;
+ } while(--todo);
+ }
+ for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
+ dst[pos] += InSamples[pos] * gain;
+}
+
+} // namespace
+
+template<>
+void Resample_<CubicTag,SSETag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ ASSUME(frac < MixerFracOne);
+
+ const CubicCoefficients *RESTRICT filter = al::assume_aligned<16>(state->cubic.filter);
+
+ src -= 1;
+ for(float &out_sample : dst)
+ {
+ const uint pi{frac >> CubicPhaseDiffBits};
+ const float pf{static_cast<float>(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)};
+ const __m128 pf4{_mm_set1_ps(pf)};
+
+ /* Apply the phase interpolated filter. */
+
+ /* f = fil + pf*phd */
+ const __m128 f4 = MLA4(_mm_load_ps(filter[pi].mCoeffs), pf4,
+ _mm_load_ps(filter[pi].mDeltas));
+ /* r = f*src */
+ __m128 r4{_mm_mul_ps(f4, _mm_loadu_ps(src))};
+
+ r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
+ r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+ out_sample = _mm_cvtss_f32(r4);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+template<>
+void Resample_<BSincTag,SSETag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ const float *const filter{state->bsinc.filter};
+ const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
+ const size_t m{state->bsinc.m};
+ ASSUME(m > 0);
+ ASSUME(frac < MixerFracOne);
+
+ src -= state->bsinc.l;
+ for(float &out_sample : dst)
+ {
+ // Calculate the phase index and factor.
+ const uint pi{frac >> BSincPhaseDiffBits};
+ const float pf{static_cast<float>(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)};
+
+ // Apply the scale and phase interpolated filter.
+ __m128 r4{_mm_setzero_ps()};
+ {
+ const __m128 pf4{_mm_set1_ps(pf)};
+ const float *RESTRICT fil{filter + m*pi*2};
+ const float *RESTRICT phd{fil + m};
+ const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
+ const float *RESTRICT spd{scd + m};
+ size_t td{m >> 2};
+ size_t j{0u};
+
+ do {
+ /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
+ const __m128 f4 = MLA4(
+ MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])),
+ pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j])));
+ /* r += f*src */
+ r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
+ j += 4;
+ } while(--td);
+ }
+ r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
+ r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+ out_sample = _mm_cvtss_f32(r4);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+template<>
+void Resample_<FastBSincTag,SSETag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ const float *const filter{state->bsinc.filter};
+ const size_t m{state->bsinc.m};
+ ASSUME(m > 0);
+ ASSUME(frac < MixerFracOne);
+
+ src -= state->bsinc.l;
+ for(float &out_sample : dst)
+ {
+ // Calculate the phase index and factor.
+ const uint pi{frac >> BSincPhaseDiffBits};
+ const float pf{static_cast<float>(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)};
+
+ // Apply the phase interpolated filter.
+ __m128 r4{_mm_setzero_ps()};
+ {
+ const __m128 pf4{_mm_set1_ps(pf)};
+ const float *RESTRICT fil{filter + m*pi*2};
+ const float *RESTRICT phd{fil + m};
+ size_t td{m >> 2};
+ size_t j{0u};
+
+ do {
+ /* f = fil + pf*phd */
+ const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j]));
+ /* r += f*src */
+ r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
+ j += 4;
+ } while(--td);
+ }
+ r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
+ r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+ out_sample = _mm_cvtss_f32(r4);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+
+template<>
+void MixHrtf_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const MixHrtfFilter *hrtfparams, const size_t BufferSize)
+{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
+
+template<>
+void MixHrtfBlend_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
+{
+ MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
+ BufferSize);
+}
+
+template<>
+void MixDirectHrtf_<SSETag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
+ const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
+ float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
+{
+ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
+ IrSize, BufferSize);
+}
+
+
+template<>
+void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
+ float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+ const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
+
+ for(FloatBufferLine &output : OutBuffer)
+ MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++,
+ *TargetGains++, delta, min_len, aligned_len, Counter);
+}
+
+template<>
+void Mix_<SSETag>(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain,
+ const float TargetGain, const size_t Counter)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+ const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
+
+ MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain, TargetGain, delta, min_len,
+ aligned_len, Counter);
+}
diff --git a/core/mixer/mixer_sse2.cpp b/core/mixer/mixer_sse2.cpp
new file mode 100644
index 00000000..edaaf7a1
--- /dev/null
+++ b/core/mixer/mixer_sse2.cpp
@@ -0,0 +1,90 @@
+/**
+ * OpenAL cross platform audio library
+ * Copyright (C) 2014 by Timothy Arceri <[email protected]>.
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ * Or go to http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#include "config.h"
+
+#include <xmmintrin.h>
+#include <emmintrin.h>
+
+#include "alnumeric.h"
+#include "defs.h"
+
+struct SSE2Tag;
+struct LerpTag;
+
+
+#if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE2__)
+#pragma GCC target("sse2")
+#endif
+
+template<>
+void Resample_<LerpTag,SSE2Tag>(const InterpState*, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ ASSUME(frac < MixerFracOne);
+
+ const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))};
+ const __m128 fracOne4{_mm_set1_ps(1.0f/MixerFracOne)};
+ const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)};
+
+ alignas(16) uint pos_[4], frac_[4];
+ InitPosArrays(frac, increment, frac_, pos_);
+ __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]),
+ static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))};
+ __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]),
+ static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))};
+
+ auto dst_iter = dst.begin();
+ for(size_t todo{dst.size()>>2};todo;--todo)
+ {
+ const int pos0{_mm_cvtsi128_si32(pos4)};
+ const int pos1{_mm_cvtsi128_si32(_mm_srli_si128(pos4, 4))};
+ const int pos2{_mm_cvtsi128_si32(_mm_srli_si128(pos4, 8))};
+ const int pos3{_mm_cvtsi128_si32(_mm_srli_si128(pos4, 12))};
+ const __m128 val1{_mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ])};
+ const __m128 val2{_mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])};
+
+ /* val1 + (val2-val1)*mu */
+ const __m128 r0{_mm_sub_ps(val2, val1)};
+ const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)};
+ const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))};
+
+ _mm_store_ps(dst_iter, out);
+ dst_iter += 4;
+
+ frac4 = _mm_add_epi32(frac4, increment4);
+ pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits));
+ frac4 = _mm_and_si128(frac4, fracMask4);
+ }
+
+ if(size_t todo{dst.size()&3})
+ {
+ src += static_cast<uint>(_mm_cvtsi128_si32(pos4));
+ frac = static_cast<uint>(_mm_cvtsi128_si32(frac4));
+
+ do {
+ *(dst_iter++) = lerpf(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne));
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ } while(--todo);
+ }
+}
diff --git a/core/mixer/mixer_sse3.cpp b/core/mixer/mixer_sse3.cpp
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/core/mixer/mixer_sse3.cpp
diff --git a/core/mixer/mixer_sse41.cpp b/core/mixer/mixer_sse41.cpp
new file mode 100644
index 00000000..8ccd9fd3
--- /dev/null
+++ b/core/mixer/mixer_sse41.cpp
@@ -0,0 +1,95 @@
+/**
+ * OpenAL cross platform audio library
+ * Copyright (C) 2014 by Timothy Arceri <[email protected]>.
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ * Or go to http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#include "config.h"
+
+#include <xmmintrin.h>
+#include <emmintrin.h>
+#include <smmintrin.h>
+
+#include "alnumeric.h"
+#include "defs.h"
+
+struct SSE4Tag;
+struct LerpTag;
+
+
+#if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE4_1__)
+#pragma GCC target("sse4.1")
+#endif
+
+template<>
+void Resample_<LerpTag,SSE4Tag>(const InterpState*, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ ASSUME(frac < MixerFracOne);
+
+ const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))};
+ const __m128 fracOne4{_mm_set1_ps(1.0f/MixerFracOne)};
+ const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)};
+
+ alignas(16) uint pos_[4], frac_[4];
+ InitPosArrays(frac, increment, frac_, pos_);
+ __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]),
+ static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))};
+ __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]),
+ static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))};
+
+ auto dst_iter = dst.begin();
+ for(size_t todo{dst.size()>>2};todo;--todo)
+ {
+ const int pos0{_mm_extract_epi32(pos4, 0)};
+ const int pos1{_mm_extract_epi32(pos4, 1)};
+ const int pos2{_mm_extract_epi32(pos4, 2)};
+ const int pos3{_mm_extract_epi32(pos4, 3)};
+ const __m128 val1{_mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ])};
+ const __m128 val2{_mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])};
+
+ /* val1 + (val2-val1)*mu */
+ const __m128 r0{_mm_sub_ps(val2, val1)};
+ const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)};
+ const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))};
+
+ _mm_store_ps(dst_iter, out);
+ dst_iter += 4;
+
+ frac4 = _mm_add_epi32(frac4, increment4);
+ pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits));
+ frac4 = _mm_and_si128(frac4, fracMask4);
+ }
+
+ if(size_t todo{dst.size()&3})
+ {
+ /* NOTE: These four elements represent the position *after* the last
+ * four samples, so the lowest element is the next position to
+ * resample.
+ */
+ src += static_cast<uint>(_mm_cvtsi128_si32(pos4));
+ frac = static_cast<uint>(_mm_cvtsi128_si32(frac4));
+
+ do {
+ *(dst_iter++) = lerpf(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne));
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ } while(--todo);
+ }
+}